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Abstract. Many ICT applications need to make sense of large volumes
of streaming data to detect situations of interest and enable timely re-
actions. Stream Reasoning (SR) aims to combine the performance of
stream/event processing and the reasoning expressiveness of knowledge
representation systems by adopting Semantic Web standards to encode
streaming elements. We argue that the mainstream SR model is not
flexible enough to properly express the temporal relations common in
many applications. We show that the model can miss relevant informa-
tion and lead to inconsistent derivations. Moving from these premises,
we introduce a novel SR model that provides expressive ontological and
temporal reasoning by neatly decoupling their scope to avoid losses and
inconsistencies. We implement the model in the DOTR system that de-
fines ontological reasoning using Datalog rules and temporal reasoning
using a Complex Event Processing language that builds on metric tem-
poral logic. We demonstrate the expressiveness of our model through
examples and benchmarks, and we show that DOTR outperforms state-
of-the-art SR tools, processing data with millisecond latency.

1 Introduction

Many information systems need to make sense of large volumes of data as soon
as they are produced to detect relevant situations and enable prompt reactions.
Areas of application include smart cities, fraud detection systems, and social
media analysis. These scenarios demand for processing abstractions and tools to
“reason” on streaming data, both in ontological and temporal terms, while also
coping with the volume, velocity, and variety of streaming data. More concretely,
they require: (1) flexible data models to integrate heterogeneous data coming
from multiple sources; (2) integration with background knowledge that describes
the application domain; (3) expressive (temporal) reasoning on both streaming
and background data; (4) high throughput and low latency.

Several systems have been developed in the last decade to address this prob-
lem, but none of them simultaneously tackles the requirements above [11, 12].
Stream Processing (SP) systems [3] focus on continuous query answering: they
use a recent portion of the streaming data to update the results of queries as new
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Fig. 1. Comparison of the traditional model to SR and the proposed DOTR model.

data becomes available. They mostly provide atemporal (relational) operations
on structured (relational) data. Instead, Complex Event Processing (CEP) sys-
tems [14] are specialized in detecting the occurrence of temporal patterns in the
stream of input elements. Both SP and CEP systems provide high throughput
and low latency, but struggle at integrating heterogeneous data and at exploiting
background knowledge on the application domain.

Recently, Stream Reasoning (SR) systems [19, 12] addressed these limitations
by adopting Semantic Web standards to represent information, thus enabling
expressive reasoning on streaming data from heterogeneous sources and static
background knowledge. Similar to SP systems, most SR systems continuously
update the results of standing SPARQL queries over static background knowl-
edge and dynamic streaming data. They use window operators to isolate the
recent portion of data to be considered, such as W1 and W2 in Fig. 1(a). Onto-
logical reasoning (when supported) assumes that all and only the information
that is in the current window (plus the background knowledge) holds. SPARQL
queries are then applied to both the original and the inferred knowledge, and
the process is repeated any time the window content changes [5, 8, 17].

We claim that this model is not flexible enough to satisfy all the requirements
identified above. Although some systems have extended SPARQL with temporal
operators [2], the model does not support expressive temporal reasoning. On the
other hand, using windows to determine the scope of reasoning and querying can
result in information loss or inconsistent derivations (see Sec. 2). In summary, the
problem of complementing expressive reasoning on rich ontological knowledge
with temporal reasoning in a coherent yet efficient way remains open.

Moving from these premises, we propose a novel approach to SR called DOTR
(Decoupled Ontological and Temporal Reasoning). It provides ontological rea-
soning on streaming and background knowledge, and efficient detection of tem-
poral patterns (temporal reasoning), while keeping the two form of reasoning
sharply decoupled. In DOTR (Fig. 1(b)), the incoming stream elements repre-
sent events that occur at some point in time, encoded as time-annotated RDF



graphs. Ontological reasoning takes place at each point in time separately, com-
bining the events happening at that time with the background knowledge on
the application domain. Temporal reasoning is applied separately: it considers
enriched events —as determined in the ontological reasoning step— and searches
for temporal patterns to derive the relevant consequences of what is happening.
This decoupling allows combining established semantics, mechanisms, and tools
in the domain of ontological reasoning with those available for temporal rea-
soning. In particular, we implement DOTR in a prototype system that provides
ontological reasoning through Datalog rules and temporal reasoning through the
TESLA event processing language, which grounds on metric temporal logic. We
demonstrate through benchmarks and case studies the benefits of DOTR with
respect to traditional SR approaches in terms of expressiveness and performance.
We evaluate DOTR under different workloads and show that it can process input
data with a latency of few milliseconds even in the presence of large knowledge
bases and complex inference tasks.

The paper is organized as follows. Sec. 2 presents background information
on SR and motivates our work. Sec. 3 and Sec. 4 present our model and its
implementation, while Sec. 5 evaluates its performance. Sec. 6 discusses related
work and Sec. 7 concludes the paper drawing future research directions.

2 Background and Motivations

This section introduces the terminology and concepts that we use in the remain-
der of the paper and discusses the motivations underneath our work.

We denote a stream as a (possibly unbounded) sequence of time-annotated
elements ordered according to temporal criteria. Each element brings a unit of
information, such as a sensor observation or a stock exchange [11, 12]. Individual
elements can be represented in different formats: for instance, SP systems often
adopt a relational model, whereas SR systems like DOTR promote data integra-
tion and expressive reasoning by using the RDF format for stream elements [19,
12]. SP, CEP, and SR systems continuously evaluate standing rules or queries
against stream elements. Rule evaluation can be either periodic or triggered by
the incoming elements. The dominant approach to SR defines rules as SPARQL
queries and adopts window operators to determine the scope for evaluating such
queries [5, 17, 8, 6]. Window operators create finite views over a stream, namely
windows, that include the portion of data relevant for the current evaluation of
rules. At each evaluation, they produce either the complete results of the pro-
cessing or the differences —additions / deletions— with respect to the previous
evaluation. Although several types of window operators have been defined, the
most common are sliding windows, which have a fixed width in terms of time
units or data elements and shift (slide) over time, always capturing the most
recent part of the stream.

We argue that the processing model based on windows is not adequate to cap-
ture temporal relations and can result in undesired (i) duplicate results, (ii) loss
of information, or (iii) inconsistency in reasoning. Fig. 2 exemplifies the first
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Fig. 2. Processing model based on windows: examples of limitations.

two problems. It represents each stream element with a label l and its time of
occurrence t as l@t. Imagine we want to detect whenever an element labeled x is
followed by an element labeled y after no more than three time units. Fig. 2(a)
shows that in the presence of sliding windows, the same occurrence might be
detected multiple times. For instance, the sequence x@8 and y@9 (denoted x@8,

y@9)) is detected both in window W1 and in window W2, requiring additional
downstream logic in the case the developer wants to prune duplicate reports
of the same occurrence. To avoid this problem, developers can adopt tumbling
windows, which partition the input stream in non-overlapping chunks. Unfor-
tunately, this solution might result in missing some occurrences of the pattern
of interest. For instance in Fig. 2(b), the sequence (x@8, y@9) is not detected
since only x@8 is part of W1 and only y@9 is part of W2. Any intermediate solu-
tion based on sliding windows that slide by more than one element at each time
would exhibit both problems [23].

Moreover, considering all the facts in the active window as simultaneously
true may result in inconsistent derivations [18]. Let us consider a surveillance
system that monitors the position of visitors in a building, where sensors deliver
a new notification every time a visitor enters a room. In a window of, say, five
minutes, a visitor might move through multiple rooms. Thus considering all the
notifications in the window as still true would lead to the erroneous conclusion
that the visitor is simultaneously in multiple rooms.

Some SR systems partially address the above issues by extending the query
language with operators to express temporal relations among the elements in the
window [2, 23]. However, they do not provide a formal framework to integrate
temporal operators and reasoning capabilities, lack a concrete implementation,
or do not provide the level of performance required in streaming scenarios.

3 The DOTR Model

We propose a novel DOTR SR model that avoids the issues discussed in Sec. 2 by:
(1) performing ontological reasoning at each point in time independently to learn
about the state of the application domain at that point in time; (2) correlating
information from different point in time in a separate temporal reasoning process.

Fig. 1(b) depicts a conceptual view of DOTR. The background knowledge con-
tains knowledge about the application domain that holds at any point in time.
We assume background knowledge to be encoded in RDF. Streaming elements
represent dynamic knowledge that only holds at a specific point in time: they in-
dicate the occurrence of events of interest and are represented as time-annotated



RDF graphs. At each time t, the state of the environment is represented by the
enriched dynamic knowledge, comprising the content of any streaming element
annotated with time t, any background knowledge about the application domain,
and any information that can be derived through ontological reasoning (vertical
axis in Fig. 1(b)), expressed using Datalog rules. Temporal reasoning (horizontal
axis in Fig. 1(b)) is orthogonal to ontological reasoning and is encoded as pat-
terns that correlate facts that are true at different points in time. In this paper
we express patterns using the TESLA CEP language, which grounds on metric
temporal logic [9].

The remainder of this section presents the DOTR model in details, starting
with an overview of the original TESLA model, and discussing how we integrate
Web structured data, background knowledge, and ontological reasoning.

The TESLA model. In TESLA, each stream element represents an event
(notification), having a type, a timestamp, and a set of attribute-value pairs.
The type of an event defines the number, name, and type of attributes for that
event. TESLA assumes events to occur instantaneously at some point in time
and encodes their time of occurrence in the timestamp. For instance, the event
Temperature@10(val=18.5, room=’R’) has type Temperature, timestamp 10 and
two attributes: val with float value 18.5, and room with string value R.

TESLA models temporal reasoning through rules that define situations of
interest —composite events— from patterns of events observed in the input
stream. As an example, the following Rule T defines a composite event of type
Fire from the observation of Smoke and high Temperature occurring in the same
room within five minutes from each other:

Rule T
define Fire(room: string)
from Smoke() and last Temperature(val>60, room=Smoke.room) within 5 min. from Smoke
with Fire.room = Smoke.room
consuming Temperature

Patterns of events start from a reference (final) event (Smoke in Rule T) and
specify time ranges in which other events are allowed to occur starting from
this reference event. For instance, Rule T requires Temperature to be within five
minutes before Smoke. Composite events keep the same timestamp as the final
event in the pattern: any Fire event produced by Rule T will have the same
timestamp as the Smoke event that triggered its production.

Events are selected by filtering on their attributes. For instance, Rule T re-
quires attribute val in Temperature to be greater than 60. In addition, attributes
of different events can be bound together, as in the case of attribute room that
must be the same in Smoke and Temperature events to trigger Rule T. The last

selection modifier indicates that only the last occurrence of an event of type
Temperature with val>60 and room=Smoke.room must be considered. Other selec-
tion modifiers include first and each. The latter triggers a different composite
event for each Temperature event within five minutes before Smoke.

TESLA also supports negations and aggregates. Both of them operate on
the set of events that appear in a given scope, defined with respect to the time
of occurrence of other events in the rule. Negations declare events that must



not occur in the scope, while aggregates compute an aggregation function (such
as sum or average) considering the values of an attribute for all the events
that occur in the scope. For example, a rule could constrain the average val

of Temperature events observed in the 5 minutes before Smoke (aggregate) and
could require a Rain event not to occur in the same scope (negation).

Finally, the with clause3 of TESLA rules defines the value of attributes in
the composite event, while the consuming clause marks events that are consumed
by the rule and cannot be used in subsequent evaluations of the same rule.

The DOTR data and rule model. DOTR abandons the attribute-value for-
mat of TESLA and encodes events as time-annotated RDF graphs. For instance,
the following graph represents a 25◦C reading from a temperature sensor in lo-
cation :loc 1 at time 10:

{ :reading_1 rdf:type :Temp. :reading_1 :has_val ‘‘25’’.
:reading_1 :is_from_sensor :sensor_1. :sensor_1 :is_at_location :loc_1. } @ 10

DOTR couples the temporal knowledge in input streams with atemporal
background knowledge encoded as an ontology consisting of an RDF graph and
a set of Datalog rules. DOTR rules take time-annotated RDF graphs in input
and produce time-annotated RDF graphs as output. They model situations of
interest by combining a set of SPARQL queries with TESLA temporal operators.
SPARQL queries capture what is happening at each time instant, while TESLA
operators combine these facts in temporal patterns. This schema is exemplified
by Rule R, which rewrites Rule T from the TESLA model to the DOTR model:

Rule R
define Fire = [dotr_id1 rdf:type :Fire. dotr_id1 :at_room ?room ]
from Smoke = [SELECT ?read1 ?room1 WHERE

{ ?read1 rdf:type :Smoke. ?read1 :is_from_sensor ?sens1.
?sens1 :is_in_room ?room1 }

] and last HighTemp = [SELECT ?read2 ?room2 WHERE
{ ?read2 rdf:type :Temp. ?read2 :is_from_sensor ?sens2.

?sens2 :is_in_room ?room2. ?read2 :has_val ?v.
FILTER (?v > 60 && ?room2 = Smoke.?room1). }

] within 5 min from Smoke
with Fire.?room = Smoke.?room1
consuming HighTemp

The define clause specifies the RDF graph produced as output. It may in-
clude variables, like ?room that will be bound by the with clause, and unique
resource identifiers like dotr id1 that are automatically generated every time a
new output graph is produced.

The from clause specifies the temporal pattern that triggers the rule, using
the TESLA syntax and semantics. The role of SPARQL in the from clause is to
extract the relevant information from the enriched knowledge that holds at each
time t. In particular, at each time t, SPARQL queries embedded in rules (such as
queries Smoke and HighTemp) get re-evaluated to extract flows of (timestamped)
facts of interest, which TESLA operators combine in patterns.

The (optional) consuming clause retains the TESLA semantics and lists the
events unavailable for subsequent triggering of the same rule.

3 We renamed the original TESLA where clause in with to avoid ambiguities with the
WHERE clause used in SPARQL.



As a concrete example of rule evaluation, consider again Rule R and as-
sume the availability of background knowledge that associates the locations
of sensors to rooms: :locA :is in room :roomA. :locB :is in room :roomA. An
inference rule (Datalog) specifies the relation between locations and rooms:
:is in room(?A,?B) :- :is at location(?A,?C), :is in room(?C,?B). Upon re-
ceiving the time-annotated RDF graph:
{ :r1 rdf:type :Temp. :r1 :has_val 70.

:r1 :is_from_sensor :s1. :s1 :is_at_location :locA. } @ 10

DOTR combines it with the background knowledge to derive: :s1 :is in room

:roomA. Thus the HighTemp SPARQL query produces one result with ?read2=:r1

and ?room2=roomA. Similarly, when receiving the time-annotated RDF graph:
{ :r2 rdf:type :Smoke. :r2 :is_from_sensor :s2.

:s2 :is_at_location :locB. } @ 12

DOTR derives: :s2 :is in room :roomA. Thus the Smoke SPARQL query pro-
duces one result with ?read1=:r2 and ?room1=:roomA. These two facts, derived
at time 10 and 12, satisfy all the constraints in Rule R. Thus, DOTR identifies
a composite event and generates a timestamped RDF graph as specified by the
define clause: { dotr:id1234 rdf:type :Fire. dotr:id1234 :at room :roomA }
@ 12, where dotr:id1234 is a randomly generated unique resource identifier4.

This example shows how the DOTR rule model sharply separates the role of
SPARQL and ontological reasoning from the temporal domain. This approach
overcomes the limitations of window-based approaches by enriching individual
events independently from their temporal relations. This separation of concerns
also simplifies the processing of rules at run-time, enabling the adoption of ex-
isting and efficient tools for reasoning and event processing.

The semantics of DOTR. DOTR inherits the semantics of temporal reasoning
from TESLA, which uses the TRIO metric temporal logic to define situations of
interest from patterns that predicate on the content and time of input events.
The semantics of TESLA encode the occurrence of an event e as a logic predicate
that is true when e occurs, and define patterns as a set of logic formulas [9].

DOTR extends TESLA by (i) extracting events from input time-annotated
RDF graphs as solution mappings of SPARQL queries evaluated under ontolog-
ical reasoning regime; (ii) producing output time-annotated RDF graphs. Since
ontological reasoning is orthogonal with respect to temporal reasoning, the se-
mantics of TESLA can be extended to capture DOTR by (i) associating each
solution mapping produced at time t from a SPARQL query to a logic predicate
that is true at time t; (ii) lifting the situations of interest identified by TESLA
as RDF graphs with their associated time of occurrence.

4 Implementation

We implemented DOTR in a prototype system5 that adopts a modular approach
to exploit state-of-the-art tools for ontological and temporal reasoning. This

4 Alternatively, blank nodes can be used.
5 DOTR is available at https://github.com/margara/DOTR.



provides high performance and simplifies software evolution if better components
become available. The prototype uses RDFox [21] to store, query, and reason on
background knowledge, and T-Rex [10] for temporal reasoning. Fig. 3 shows how
the DOTR system operates.

At rule deployment time, a rule parser analyzes the input DOTR rules. For
each DOTR rule R, the parser (1) extracts the SPARQL queries embedded
in R and submits them to RDFox, (2) translates R into a TESLA rule T by
substituting each SPARQL query with the mapping it defines, and submits T
to T-Rex, (3) extracts the set of graph definitions from the define clause of R.

At runtime, upon receiving an RDF graph G with timestamp t, DOTR:
(1) enriches G with the background knowledge and derives all the information
that holds at t (ontological reasoning); (2) executes the SPARQL queries em-
bedded in rules to extract the facts of interest that hold at t; (3) converts these
facts into TESLA events and sends them to T-Rex (temporal reasoning); (4) uses
the output generator to convert the composite events produced by T-Rex into
time-annotated RDF graphs. Next, we discuss these steps in detail.

RDFox

Background
knowledge

SPARQL
queries

TESLA
events

T-Rex

TESLA
rules

Output
generator

Graph
definitions

DOTR
rules Rule parser

TESLA
composite

events

Time-annotated
RDF graphs Time-annotated

RDF graphs

Fig. 3. Architecture of the DOTR system.

Knowledge inference. The
background knowledge is pre-
loaded into RDFox at system
initialization time. When a graph
G with timestamp t is received,
DOTR computes the whole
knowledge that holds at t by:
(i) removing from RDFox any
information ∆− coming from

every graph G′ annotated with time t′ < t; (ii) adding to RDFox all the
RDF triples ∆+ that are in G; (iii) performing ontological reasoning with the
available inference rules to remove old information that could be derived only
in the presence of ∆− and to add new information that can be derived from
∆+. This is done in a single inference process by exploiting the incremental
materialization of RDFox [20]. After this reasoning step, DOTR determines the
facts of interest that are valid at the current time by submitting to RDFox
the SPARQL queries extracted from the deployed rules. For each query RDFox
generates zero, one, or more facts of interests.

Event processing. Each fact of interest f gives rise to a new TESLA event.
The event type is the label of the query that extracted f and the event attributes
are the variables selected by the query. For instance, the example reported at the
end of Sec. 3 gives rise to two events: Smoke@10(read1=’:r1’,room1=’:roomA’) and
HighTemp@12(read2=’:r2’,room2=’roomA’). T-Rex processes these events trying
to detect the temporal patterns expressed within the deployed rules. When a
rule is triggered, T-Rex generates one or more composite TESLA events.

Output translation. The generated events have the type specified in the define

clause of the firing rule and one attribute for each variable that appears there.
For instance, consider again Rule R in Sec. 3. Each composite event produced
by T-Rex has type Fire and a single attribute room, with the same value as
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Fig. 4. Performance of DOTR, C-SPARQL, CQELS, and Esper in the CityBench suite.

the attribute room1 in the Smoke event that triggered the rule. DOTR converts
composite events into one or more RDF triples following the graph definition
specified in the define clause of the fired rules. In our example, composite event
Fire@12(room=’roomA’) would be converted to: { dotr:id1234 rdf:type :Fire.

dotr:id1234 :at room roomA. } @ 12.

5 Evaluation

In this section we measure the performance of DOTR focusing on latency, which
is a key requirement for SR, and compare it with state-of-the-art SP, CEP, and
SR tools using real data from the CityBench benchmark [1]. We also discuss
the differences among these systems in terms of expressiveness and semantics.
Furthermore, we use synthetic workloads to study which parameters affect the
behavior of DOTR the most.

We perform all the experiments on a Intel Core i7 4850HQ machine with
16 GB of DDR3 RAM, running macOS 10.13.0. We use the processing time per
input element as a performance indicator. All the systems under analysis process
individual elements from the input stream sequentially and do not overlap the
computation of different elements. As a consequence, the inverse of the processing
time also represents a good estimate of the maximum rate of input elements
that each system supports, that is, its maximum input throughput. In each
experiment we submit 30k time-annotated graphs and we compute the average
processing time per input element, which includes the time to update the content
of the RDFox store, perform reasoning, querying, event processing, and produce
output graphs. The input graphs are stored in files on a RAM disk with RDF
turtle format. The background knowledge is also stored in RAM by RDFox.

Benchmark. We compare DOTR with the C-SPARQL [5] and CQELS [17] SR
systems and with the Esper SP/CEP system, Java version 6.1.0. We rely on the
CityBench suite [1], which includes sensor data from the city of Aarhus. We use
the vehicle traffic dataset, containing the congestion level between two points
over a duration of time, and the weather dataset, with observations on tempera-
ture, humidity, and wind. Given the similarities between the benchmark queries,
we present the results for queries Q1 and Q2 only. In the case of C-SPARQL



and CQELS, we rely on the implementation of the queries provided with the
CityBench suite. In the case of Esper, we implement a translator that converts
the input RDF elements into Esper events (Java objects). The conversion takes
place before the experiments and does not contribute to the time we measure.

We report queries Q1 and Q2 as presented in the original paper on CityBench:
(Q1) What is the traffic congestion level on each road of my planned journey?
(Q2) What is the traffic congestion level and weather condition on each road
of my planned journey? In practice, the implementation of Q1 considers two
streams, each containing the congestion of a specific road, and returns all possible
pairs of congestion level values, one per stream, that occur in a window of 3
seconds. The implementation of Q2 considers a stream of congestion readings
and a stream of weather readings, and reports congestion level, temperature,
humidity, and wind speed notifications that occur in a window of 3 seconds.

Since DOTR does not distinguish between input elements coming from differ-
ent streams, we combine RDF triples from all the relevant streams and generate
a time-annotated graph for each time instant. Each resulting graph contains 10
triples to represent congestion readings and 5 triples to represent weather read-
ings. In Esper, we encode each sensor reading as a separate event object. In the
case of DOTR, C-SPARQL, and CQELS we consider a background knowledge of
over 100k triples with the type of property measured by each sensor: congestion
or weather reading. In Esper, we encode the property type as an event attribute,
thus avoiding the use of a separate background knowledge.

Different engines present different execution models that lead to different
results [1, 12]. CQELS, Esper, and DOTR operate in a pure reactive way, by
producing new results each time they receive an input element. C-SPARQL
only supports time-based windows, which produce results periodically, when the
window closes. Moreover, C-SPARQL and CQELS rely on the windowing model
presented in Sec. 2 and compute all the query results that derive from the data
in the active window, whereas Esper and DOTR produce only the new results
at each evaluation, thus automatically removing duplicates.

We implement query Q1 using the each within operator that instructs DOTR
to always consider all the congestion level information contained in the window.
This mimics the behavior of C-SPARQL and CQELS, although it avoids produc-
ing duplicate results as discussed above. In Esper we select all congestion level
events by exploiting the every operator offered by the engine. For query Q2, we
use the last within operator that reports, for each incoming element, only the
last available information about congestion and weather. This better satisfies
the semantics of the query by notifying users about the most recent traffic and
weather information when some change occurs. Esper, C-SPARQL, and CQELS
do not provide operators to select only the most recent information. This well
exemplifies the flexibility of the temporal reasoning offered by DOTR. As we
demonstrate later, this flexibility comes with the benefit of a reduced processing
time, since temporal reasoning only needs to analyze the latest information.

The processing time of a query depends on the number of events it considers,
which depends on the timestamp of events. Accordingly, we measure processing



time for different frequencies of event arrival by artificially manipulating the
timestamp of input graphs. This is the same approach followed by CityBench.

As Fig. 4 shows, for both query Q1 and Q2 DOTR takes than 4ms to process
each input graph when the frequency of arrival remains below 100 graphs per
second. When further increasing the input rate, the latency for Q1 grows up
to 7ms, since the number of congestion elements to consider increases. Instead,
the latency of Q2 remains stable below 3ms, since Q2 only considers the last
available notifications.

The latency of C-SPARQL and CQELS is in the order of hundreds or even
thousands of milliseconds in the same scenarios, and C-SPARQL often crashes
without providing results with a high input rate. The order of magnitude and the
trends of these results are in line with those measured in previous studies [1]. The
results of C-SPARQL and CQELS are motivated by the nature of the problem,
which grows quadratically with the number of elements in each window. C-
SPARQL suffers more when the number of elements increases since it recomputes
all the results when the window changes, while CQELS indexes and re-uses
results from previous window evaluations.

Esper is the winner in Q1 tests, with a processing time always below 0.8ms.
However, Esper does not to use background knowledge, since we encoded all
the information within the input events. Also, input events are pre-encoded as
plain Java objects in memory, which removes the times of (de)serialization and
parsing from our measures. In practice, the time we measure for Esper represents
the pure cost of event processing (or temporal reasoning). At high input rates,
this processing time is about one tenth of the average processing time of DOTR,
in line with the analysis we present in the remainder of this section. CQELS
and C-SPARQL exhibit higher processing times for query Q2, since Q2 extracts
more input elements and produces more results than Q1. The advantages of the
DOTR model become evident: by considering only the last available congestion
and weather data, DOTR reduces the amount of elements to process and the
amount of results produced. Esper also suffers query Q2, due to the large number
of results to produce at each query evaluation. When the input rate grows its
processing time grows well above that of DOTR, reaching the level of CQELS.

We may summarize the considerations above by concluding that: (1) under
comparable conditions (query Q1), DOTR outperforms C-SPARQL and CQELS
by almost two orders of magnitude; (2) thanks to its expressive temporal rea-
soning, DOTR can better select the results to produce, providing the best per-
formance in query Q2; (3) the use of RDF format, background knowledge, and
ontological reasoning increase the expressiveness but come at a cost with respect
to traditional event processing, as exemplified by the comparison with Esper.

Sensitivity to parameters. We study the sensitivity to workload characteristics
through synthetic benchmarking, starting from a default scenario and changing
one parameter at a time.

Default scenario. Our default scenario considers ten rules, all having the struc-
ture below and differing only for the value X used in the FILTER clause.



define CE = [dotr_id1 :has_val ?num.]
from A = [SELECT ?sensorA ?valA ?roomA WHERE

{ ?sensorA :read valA ?valA. ?sensorA :is in room ?roomA.
FILTER(?valA>X ) } ] and last

B = [SELECT ?sensorB ?valB ?roomB WHERE
{ ?sensorB :read valB ?valB. ?sensorB :is in room ?roomB.
FILTER(?valB>X && ?roomB=A.?roomA) } ] within 30s from A

with CE.?num = A.?valA

The input time-annotated graphs contain two types of RDF triples: :sensorK

:read valA val and :sensorK :read valB val , where K is uniformly distributed
in 1..10 and val is a random integer that always satisfies SPARQL filters in
rules. Triples of the first type can trigger rules by completing a valid sequence
pattern and occur with 20% probability. The timestamps of any two consecu-
tive input graphs differ by one second, simulating an input rate of one graph
per second. The background knowledge includes information on the position of
sensors, necessary to trigger the rules, in the form: :sensorS :equips :objectO.

:objectO :placed in :roomX. :roomR :number R , where the number of rooms R

is uniformly distributed in 1...5 and there are two objects per room. Datalog
rule :is in room(?S, ?R) :- :equips(?S, ?O), :placed in(?O, ?R). determines
the room each sensor is in. We increase the size and complexity of the back-
ground knowledge by adding 10 rules similar to the one above, which contribute
in producing triples (albeit not relevant for existing rules). We also add 10k
triples to the background knowledge, with additional attributes for each sensor.

In our default scenario each input graph contains a single RDF triple. Table 1
shows the average processing time per input element, together with the absolute
and relative cost of each processing phase. DOTR produces results with an aver-
age latency of 12.09ms, spending almost 80% of the time in the processing steps
concerned with ontological reasoning. Event processing (temporal reasoning) ac-
counts for about 16% of the overall processing time. Updating the knowledge
base by adding new information and removing old one accounts for only 1.65%
of the total time. Translating input data from RDF to TESLA native events and
back takes about 3% of the total time.

time (ms) time (%)
Knowledge update 0.20 ms 1.65 %
Ontological reasoning 1.96 ms 16.21 %
Query evaluation 7.56 ms 62.53 %
Input translation 0.19 ms 1.57 %
Event processing 2.01 ms 16.63 %
Output translation 0.17 ms 1.41 %
Total 12.09 ms 100.00 %

Table 1. Default scenario: processing time.

Cost of reasoning. We study the
cost of reasoning by increasing the
number of Datalog rules in the
knowledge store (Fig. 5). The cost
of reasoning (and materializing in-
formation) is initially small, and
the processing time remains almost
unchanged from 1 to 1k Datalog
rules. After this threshold, the im-

pact of reasoning becomes more prominent, and the processing time increases
by a factor of 30 from 1k to 100k Datalog rules. Additional experiments, not
reported here for space reasons, measure the same level of performance when
changing the number of RDF triples in the background store from 1k to 1M.

In general, the cost of reasoning depends not only on the number of rules,
but also on their complexity. Given the breadth of the topic and the availability
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of specialized articles, we do not present a detailed analysis of reasoning. The
interested reader can refer to the materialization algorithm of RDFox [20].

Cost of event processing. We study the cost of temporal reasoning by adding
temporal operators to rules, thus increasing the length of the event patterns
to detect (Fig. 6). We consider both patterns with last within and with each

within operators. In the first case, the triggering of a rule generates a single
TESLA event, while in the second case it generates as many TESLA events
as the number of event bindings that satisfy the pattern. With two to three
operators per rule, the two cases are comparable, since the processing time is
dominated by reasoning and SPARQL querying. With longer sequences, the each

within rules cost more, in line with the original results of T-Rex.

Number of rules. Fig. 7 (continuous line) shows the processing time when
increasing the number of deployed rules. More rules means more queries to the
RDF store, and more results to produce. The processing time remains below
400ms even in the case of 1k rules, which involves evaluating 2k SPARQL queries
for each input graph (one for each of the two events appearing in each rule). To
further optimize DOTR, we move from the observation that query processing
represents a large fraction of the entire processing time, and we modify DOTR
to move data filtering from SPARQL (RDFox) to T-Rex. In this way, SPARQL
queries that differ only for their FILTER part can be merged together, removing
and delegating the filtering step to T-Rex. Our workload represents an optimal
setting for the modified system, since all the DOTR rules extract the same two
types of events applying different filters (the value X used in the FILTER clause).
The dashed line in Fig. 7 shows the processing when we enable this optimization.
Remarkably, it remains almost constant and below 2ms with up to 100 rules,
and increases to 7ms only when reaching 1k rules.

6 Related Work

The last decade has seen an increasing interest in techniques and tools to process
streaming data. SP systems define abstractions to continuously query streams
of (typically relational) data [3], while CEP systems aim to detect situations of
interest from streams of low-level event [14, 11].

SP and CEP systems are not suited to process Web structured data, to inte-
grate background knowledge, and to perform ontological reasoning [2]. Stream



Reasoning (SR) systems address these limitations by adapting stream processing
to the RDF data model [19, 12].

As discussed in Sec. 2, most SR systems follow the CQL approach and ex-
tend SPARQL with windows to support continuous queries over streaming data.
C-SPARQL [5], CQELS [17], SPARQLstream [8], and Laser [6] all follow this
direction. DL-LiteA(S,F) [13] extends DL-LiteA to perform spatial and window-
based temporal reasoning over streams. Some proposals investigate the use of
Answer Set Programming (ASP) for SR. LARS [7] features model-based se-
mantics by building on ASP enriched with window operators. StreamRule [22]
combines a window-based engine, such as CQELS, with an ASP reasoner. IN-
STANS [23] avoids windows and demonstrates that standard SPARQL queries
can express several common forms of ontological and temporal reasoning. Al-
though conceptually interesting, the approach lacks high-level abstractions to
express the reasoning tasks. Moreover, it currently does not provide a level of
performance comparable with state-of-the-art SP/CEP systems. Perhaps the ap-
proach most closely related to ours is EP-SPARQL [2], which extends SPARQL
with temporal operators derived from the CEP domain. However, it does not
investigate in depth the relation between detection of temporal patterns and
semantic inference, as we do in our model.

Some approaches extend RDF with a temporal dimension [15, 24]. They differ
from DOTR since they do not target on the fly detection of temporal patterns,
and they integrate rather than decoupling ontological and temporal reasoning.

Finally, DOTR exploits the recent advances in incremental reasoning: they
include the exploitation of time annotations [4], counting algorithms and parallel
processing [25], and optimizations for small incremental changes [16].

7 Conclusions

This paper presented a novel model for SR that decouples ontological and tem-
poral reasoning. It grounds ontological reasoning on RDF graphs and Datalog
rules, and temporal reasoning on a CEP language that provides an expressive
yet computationally efficient subset of a metric temporal logic. We implemented
the model by building on state-of-the-art tools for event processing and knowl-
edge storage, query, and inference. The resulting system outperforms existing SR
systems, showing that the added expressiveness in terms of temporal reasoning
can be beneficial for processing, too. As future work, we will study the usability
and expressiveness of the model in greater details, also considering primitives to
alter the content of the background knowledge over time.
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