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Abstract. The current state of the art in RDF Stream Processing (RSP) proposes
several models and implementations to combine Semantic Web technologies with
Data Stream Management System (DSMS) operators like windows. Meanwhile,
only a few solutions combine Semantic Web and Complex Event Processing
(CEP), which includes relevant features, such as identifying sequences of events
in streams. Current RSP query languages that support CEP features have several
limitations: EP-SPARQL can identify sequences, but its selection and consumption
policies are not all formally defined, while C-SPARQL offers only a naive support
to pattern detection through a timestamp function. In this work, we introduce
an RSP query language, called RSEP-QL, which supports both DSMS and CEP
operators, with a special interest in formalizing CEP selection and consumption
policies. We show that RSEP-QL captures EP-SPARQL and C-SPARQL, and
offers features going beyond the ones provided by current RSP query languages.

1 Introduction

Processing heterogeneous and dynamic data is a challenging research topic and has a
wide range of applications in real-world scenarios. Different models, languages, and
systems have been proposed in the last years to handle streams on the Web, combining
Semantic Web technologies with Complex Event Processing (CEP) [18] and Data Stream
Management Systems (DSMS) [5] features. These languages and systems, commonly
labeled under the RDF Stream Processing (RSP) name, are solutions that extend SPARQL
with stream processing features, based on either the CEP or DSMS paradigm.
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A problem that recently emerged is the heterogeneity of those solutions [13, 11].
Every RSP engine has unique features that are not replicable by others; moreover,
even when the same feature is supported by two or more engines, the behavior and the
produced output can be different and hardly comparable. In our previous work, namely
RSP-QL [14] and LARS [7], we developed models to capture the RSP features inspired
by the DSMS paradigm, e.g., time-based sliding windows and aggregations over streams.

In this paper, we study the integration of the currently available CEP features in RSP
engines into RSP-QL, by investigating the research question: “Is it possible to extend
RSP-QL to enable the detection of expressive event patterns over RDF streams?” We
give an answer with RSEP-QL, an RSP query model that incorporates CEP at its core.

RSEP-QL is a reference model1 and has several possible uses: (a) to provide a
common framework to explain the behavior of existing RSP solutions, enabling their
comparison; (b) to support software architects to design new RSP implementations;
testers in designing benchmarks and evaluations; and researchers to have a general
model to develop new research; (c) to act as a formal model to define a standardized
language that embraces the most prominent features of existing RSP languages.

Combining CEP and DSMS features in a unique model is a step towards filling the
gap between RSP and stream processing engines available on the non-semantically-
aware systems on the market (e.g., Oracle Event Processor, ESPER, IBM InfoSphere
Streams) [10]. There are indeed several motivations behind combining DSMS and CEP.
It is clearly possible to mix different DSMS and CEP languages to achieve the desired
tasks, but there are drawbacks, e.g., the need to learn multiple languages, the limited
possibility for query optimizations, the potential higher amount of resources.

Our contributions are: (1) We elicit a set of requirements to design an RSP query
model that supports both DSMS and CEP features. (2) We adapt our model to process
RDF graphs as stream elements, following the current guidelines of the W3C RSP
Community Group (RSP-CG).2 (3) We introduce event patterns to capture CEP features
of existing RSP engines, most notably the sequencing operator, and provide syntax and
semantics as extensions of SPARQL. (4) We formally define selection and consumption
policies, to capture the operational semantics of the CEP-inspired RSP engines, contrary
to current approaches that consider policies at the implementation level.

2 Related Work and Requirements

RSP engines emerged in recent years, with the goal of extending RDF and SPARQL to
process RDF streams. They can be broadly divided into two groups. RSPs influenced by
CEP reactively process the input streams to identify relevant events and sequences of
them. EP-SPARQL [3] is one of the first RSP that adopts some of these complex pattern
operators. Other such recent approaches include Sparkwave [17] and Instans [20]. On
the other hand, approaches inspired by DSMS exploit sliding window mechanisms to
capture a recent and finite portion of the input data, enabling their processing through
SPARQL operators [15] in an atemporal fashion. C-SPARQL [6], CQELS [19], and
SPARQLstream [9] are representative examples of this group.

1 Cf. https://www.oasis-open.org/committees/soa-rm/faq.php.
2 Cf. https://www.w3.org/community/rsp/
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Fig. 1: Illustration of the running example. The stream, on the top left, composes of five
items (G1, 2) . . . (G5, 10). Events matched the pattern E1 SEQ E2 are depicted below
the timeline. The bold lines denote the intervals that justify the events. The table on the
right shows the results produced with regards to different policies.

Currently, there is so far no RSP language that can combine both paradigms under
a clearly defined semantics, leaving a gap for those use cases that require this query
expressivity. However, some initial attempts exist. In C-SPARQL, one can access the
timestamp of a statement and specify limited forms of temporal conditions. CQELS
recently proposed to integrate sequencing and path navigation [12], although it does not
include typical selection mechanisms of CEP [10]. In the following, we present a set of
requirements to lead the design of RSEP-QL, based on an analysis of the state of the art
in RSP, with a particular focus on the CEP features of EP-SPARQL, and C-SPARQL.

[R1] RSEP-QL should process RDF graph-based streams. While in early RSP data
models the stream data items are represented by single RDF statements, the recent
standardization effort from W3C RSP-CG proposes to adopt RDF graphs as items1. The
latter model generalizes of the former, as a stream of time-annotated RDF statements can
be modeled as a stream of time-annotated RDF graphs, each containing one statement.
In this sense, addressing [R1] is important to realize a generic RDF stream query model.

[R2] RSEP-QL must preserve the DSMS features captured by RSP-QL. The intro-
duction of CEP features in the model should not lead to incompatibilities with the RSP
models we already captured in RSP-QL [14]. This requirement is important to guarantee
that RSEP-QL is generic enough to model the operational semantics of different systems.

[R3] RSEP-QL should capture the CEP features of existing RSP engines. In this
work, we focus on the SEQ operator: the most basic building block in CEP. Intu-
itively,E1SEQE2 identifies events matching patternE1 followed by those matchingE2.
Even if it may seem straightforward to formalize this operator, its execution in different
engines produces different and hardly comparable results. We, therefore, refine [R3] into
two sub-requirements, associated with the two engines we aim at capturing, EP-SPARQL
and C-SPARQL. To illustrate our idea, we use the RDF stream depicted in Figure 1.

[R3.1] RSEP-QL should capture the EP-SPARQL SEQ behavior. To the best of our
knowledge, EP-SPARQL is the RSP language with the largest support for CEP features,
with a wide range of operators to define complex events, e.g., SEQ, OPTIONALSEQ,
EQUALS and EQUALSOPTIONAL. EP-SPARQL supports three different policies [2]:

– unrestricted: all input elements are selected for matching the event patterns.
– chronological: only the earliest input that can be matched are selected for matching

the event patterns; then, they are ignored in the next evaluations.

1 Cf. http://goo.gl/pqUSri (last access: July 7, 2016).



– recent: only the latest input that can be matched are selected for matching the event
patterns; then, they are ignored in the next evaluations.

The table of Figure 1 shows the different behaviors of these three settings. Assume that
there are two evaluations at time points 8 and 10. Unrestricted returns e1, e2, e3 at 8
and e4 at 10. Chronological returns only e1 and e2 at 8. Recent returns only e2 and e3
at 8. Furthermore, both chronological and recent do not return any event at 10 because
(:a1 :p :b1) were already consumed by the previous evaluation.

Notably, the EP-SPARQL query does not change in the three cases, as the setting is
a configuration parameter set at the startup of the engine. Moreover, independently on
the setting, all the system outputs happen as soon as they are available.
[R3.2] RSEP-QL should capture the C-SPARQL SEQ behavior. C-SPARQL is
based on DSMS techniques, but it has a naive support to some CEP features. C-SPARQL
implements a function, named timestamp that takes as input a triple pattern and returns
the time instant associated to the most recent matched triple. This function can be used
inside a FILTER clause to express time constraints among events.

The evaluation in C-SPARQL strictly relies on the notion of time-based sliding
window, which selects a portion of the stream to be used as input and the time instants on
which evaluations occur. Wrt. the above example, with a sliding window with a length
of 7 and that slides of 1 at each step, C-SPARQL outputs e3 at time 8 and has no output
at 10, not because the input triples were consumed, but because it considers only the two
triples (:b1 :q :c1) and (:a3 :p :b3) which do not match the sequencing pattern.
Remarks. While EP-SPARQL is an engine for performing CEP, C-SPARQL is a DSMS-
inspired RSP engine that offers a naive support to event pattern matching. As shown
above, even with simple event patterns, the two systems behave in completely different
ways, and none of them is able to capture the other. It is out of the scope of this paper
to determine which system is the most suitable to be used given a use case and the
relative set of requirements. Our goal is to build a model able to capture the behavior of
both engines. In this sense, satisfying both [R3.1] and [R3.2] is minimal to assess that
RSEP-QL is a common framework to describe the semantics of RSP engines.

3 Anatomy of RSEP-QL Queries

A SPARQL query is defined by a signature of the form (E,DS ,QF ), that indicates the
evaluation of an algebraic expression E over a set of data DS to produce an answer
formatted according to a query form QF [16]. This section proposes RSEP-QL queries
that extend SPARQL’s queries with the following features: (1) the capability to take as
input not only RDF graphs but also RDF streams; (2) a set of operators to access/process
streams; and (3) an evaluation paradigm moving from one-time to continuous semantics.

3.1 Data Model

There are two main kinds of input data in the context of stream processing. The first
are streams, defined as sequences of highly dynamic and time-annotated data such
as sensor data and micro-posts. The second type is contextual (or background) data,



which is usually static or quasi-static and is used to enrich the streams and solve more
sophisticated tasks, e.g., sensor locations, user profiles. etc. In RSP, contextual data may
be captured by RDF graphs, while streams are captured with RDF streams.
RDF streams. To fulfill [R1], we adopt the notion of time-annotated RDF graphs as
elements of RDF streams, following the data model under design by RSP-CG. We
define a timeline T as an infinite, discrete, ordered sequence of time instants (t1, t2, . . .),
where ti∈N and for all i>0, it holds that ti+1−ti is a constant, called the time unit of T .

We now extend the definition of RDF graphs with time annotations and then define
RDF streams as sequences of them.

Definition 1 (RDF Stream) A timestamped RDF graph is a pair (G, t), where G is an
RDF graph and t ∈ T is a time instant. An RDF stream S is a (potentially) unbounded
sequence of timestamped RDF graphs in a non-decreasing time order:

S = (G1, t1), (G2, t2), (G3, t3), (G4, t4), . . .

where, for every i > 0, (Gi, ti) is a timestamped RDF graph and ti ≤ ti+1.

Other streaming data model profiles exist and are currently under study by the RSP-CG.
In this work, we focus on the model where the time annotation is represented by one
time instant, as it is a usual case that appears in several scenarios.

Example 1. Fig.1 illustrates a stream S=(G1, 2), (G2, 4), (G3, 6), (G4, 8), (G5, 10), . . .,
where each Gi contains the depicted RDF triples. ut

Time-varying graphs. Statements in RDF graphs are atemporal and capture a given
situation in a snapshot. We introduce the notion of time-varying graphs to capture the
evolution of the graph over time (similar to time-varying relations in [4]).

Definition 2 (Time-varying graph) A time-varying graph G is a function that relates
time instants t ∈ T to RDF graphs:

G : T → {G | G is an RDF graph}.
An instantaneous RDF graph G(t) is the RDF graph identified by the time-varying
graph G at a given time instant t.

RDF streams and time-varying graphs differ on the time information: while in the former
time annotations are accessible and processable by the stream processing engine, in the
latter there is no explicit time annotation. In this sense, t in Def 2 can be viewed as a
timestamp denoting the access time of the engine to the graph content.

3.2 RSEP-QL Dataset

A SPARQL dataset is a set of pairs (u,G), where u ∈ I ∪ {def }1 is an identifier for an
RDF graph G. This section proposes the notion of dataset for RSEP-QL. It differs from
SPARQL datasets in the presence of streams, and that RSEP-QL dataset elements may
vary over time. Streams are potentially infinite, and the usage of windows allows to have
a finite (and usually recent) view of portions of the streams for practical processing. We
now introduce a generic notion of window functions, inspired by LARS [7].

1 def 6∈ I ∪ L ∪B denoting the default graph. See [16] for the definitions of I, L,B.



Definition 3 (Window function) A window function W with a vector of window pa-
rameters p, denoted as W [p], takes as input a stream S, a time instant t ∈ T and
produces a substream (aka. window) S′ of S, i.e., a finite subsequence of S.

This generic notion can be instantiated with specific parameters p to realize window
functions used in practice. In the following, we present a set of window functions that
constitute the basis of the operators defined in the next sections.
Time-based (sliding) windows. A time-based window function W τ is defined through
p = (α, β), where α is the width and β is the sliding step. It slides every β time units
and filters input graphs of the last α time units. Let t′ = b tβ c·β, we have that:

W τ [p](S, t)=(Gj , tj), . . . , (Gk, tk),
where [j, k] is the maximal interval st. ∀i ∈ [j, k] : (Gi, ti) ∈ S ∧ t′−α < ti ≤ t′.
Landmark windows. A landmark window function Wλ defined through p = (t0)
returns the content of the input stream from t0:

Wλ[p](S, t) = (Gj , tj), . . . , (Gk, tk)

where [j, k] is the maximal interval st. ∀i ∈ [j, k] : (Gi, ti) ∈ S ∧ t0 ≤ ti ≤ t.
As we show below, landmark windows are useful to capture the behaviour of event

pattern systems like EP-SPARQL. In fact, they offer views over large portions of the
stream, without the eviction mechanism typical of sliding windows.
Identity window. The identity window function W id is introduced to give a uniform
definition of event patterns evaluation later. It simply returns the input stream, that is:

W id [p](S, t) = S, and p is an empty vector.

Interval windows. The interval-based (or fixed) window function Wt is defined
through p = (t′, t′′) and returns the part of the input stream bounded by [t′, t′′]:
Wt[p](S, t) = (Gj , tj), . . . , (Gk, tk) where ∀i∈[j, k] : (Gi, ti) ∈ S ∧ ti∈[t′, t′′].

For simplicity, we often omit the parameters p when it is clear from the context
and write W (S, t). Notably, window functions can be nested, for example, we can
have Wt(W τ (S, t), t). We denote the nesting by the • operator. Formally:

W1 •W2(S, t) =W1(W2(S, t), t).

Example 2. Consider S from Example 1. Here are some results of applying the time-
based, landmark, and interval window functions W τ , Wλ, and Wt on this stream:

Wλ[(1)](S, 8) = (G1, 2), (G2, 4), (G3, 6), (G4, 8)

W τ [(5, 1)](S, 8) = (G2, 4)(G3, 6), (G4, 8)

Wt[(0, 5)] •Wλ[(1)](S, 8) = (G1, 2), (G2, 4).

Dataset. We now formally define RSEP-QL datasets, as sets of pairs of an identifier
u ∈ I ∪ {def } and either a window function applied to a stream or a time-varying graph.

Definition 4 (RSEP-QL Dataset) An RDF streaming dataset SDS is a set consisting
of an (optional) default time-varying graph G0, n ≥ 0 named time-varying graphs,
and m ≥ 0 named window functions applied to a set of streams S = {S1, . . . , Sk}:

SDS = {(def , G0)} ∪ {(gi, Gi) | i ∈ [1, n]} ∪
{(wj ,Wj(S`)) | j ∈ [1,m], ` ∈ [1, k]}, where



− G0 is the default time-varying graph,
− gi ∈ I is the identifier of the time-varying graph Gi,
− wj∈I is the identifier of the named window function Wj over the RDF stream S`∈S.

We denote by ids(SDS ) = {def } ∪ {g1, . . . , gn} ∪ {w1, . . . , wm} the set of symbols
identifying the time-varying graphs and windows in SDS .

An important difference that emerges comparing the SPARQL and the RSEP-QL dataset
is that the former contains RDF graphs and is fixed in the sense that SPARQL datasets
are composed according to the query (e.g. FROM clauses), and the set of elements
included in a dataset does not vary over time. On the other hand, RSEP-QL datasets
contain RDF streams and time-varying graphs that are updated as time proceeds.

Example 3. Let Wλ
1 and W τ

2 be a landmark and a time-based window functions with re-
spective parameters p1=(1) and p2=(5, 1). Then, SDS={(w1,W

λ
1 (S)), (w2,W

τ
2 (S))}

is an RDF streaming dataset, where S is from Example 1. ut

3.3 RSEP-QL Patterns

To fulfill [R2] and [R3], we introduce RSEP-QL operators to enable DSMS and CEP
features. We then extend SPARQL graph patterns to support these operators on streams.

In SPARQL, the construction of the query relies on graph patterns. The elementary
building block for building graph patterns is Basic Graph Patterns (BGP), i.e. sets of
triple patterns (ts, tp, to) ∈ (I∪B∪L∪V )× (I∪V )× (I∪B∪L∪V ). More complex
patterns are recursively defined on top of BGP using operators such as join and union1.

Concerning DSMS operations, we introduce the window graph pattern, defined as
an expression (WINDOW wj P ), where P is a SPARQL graph pattern and wj ∈ I is
an IRI. Intuitively, WINDOW indicates that P should be evaluated over the content of
the window identified by wj in the dataset (similarly to the SPARQL GRAPH operator).

To support CEP features, we introduce event patterns as follows.

(1) If P is a Basic Graph Pattern, w ∈ I , then the expressions (EVENT w P ) is an
event pattern, named Basic Event Pattern (BEP)2;

(2) If E1 and E2 are event patterns, then the expressions (FIRST E1), (LAST E1),
(E1 SEQ E2) are event patterns;

To relate graph and event patterns, we define the event graph pattern as (MATCH E)
where E is an event pattern.

3.4 Query definition

Having all building blocks, it is now possible to define RSEP-QL queries.

Definition 5 An RSEP-QL query Q is defined as (SE ,SDS ,ET ,QF ), where SE is an
RSEP-QL algebraic expression, SDS is an RDF streaming dataset, ET is the sequence
of time instants on which the evaluation occurs, and QF is the Query Form.

1 Cf. https://www.w3.org/TR/sparql11-query for the whole list.
2 We do not tackle here the case where w ∈ I ∪ V , which is one of our future works.



The continuous evaluation paradigm is captured in the query signature through the set
ET of execution times. Intuitively, this set represents the time instants on which the
algebraic expression evaluation may occur. Note that this set is not explicitly defined
by the query and in general it may be unknown at query registration time (as it can
depend on the streaming content). In practice, ET can be expressed through report
policies [8], which define rules to trigger the query evaluation. For example, C-SPARQL
can be captured by a window close report policy, i.e., evaluations are periodically and
determined by the window definition. EP-SPARQL and CQELS are regulated by content
change report policy, i.e., evaluations occur every time a new item appears on the stream.

Example 4. This example presents an RSEP-QL
query with CEP features. The MATCH clause de-
scribes an event pattern (E1 SEQ E2), where the
BEPsE1 andE2 are defined on the respective land-
mark and time-based windows from Example 3.
Their patterns are: E1=EVENT w1 (?x :p ?y)
and E2=EVENT w2 (?y :q ?z ).

SELECT ?x ?z

FROM NAMED :S WIN [LND 9] AS :w1

FROM NAMED :S WIN [RANGE 5] AS :w2

EVENT ON :w1 { ?x :p ?y. } AS E1

EVENT ON :w2 { ?y :q ?z. } AS E2

WHERE { MATCH { E1 SEQ E2 } }

4 RSEP-QL Semantics

We now proceed to define the evaluation semantics of the operators introduced in Sec-
tion 3.3. Section 4.1 and 4.2 present the semantics of the graph pattern and event pattern
operators, respectively. Section 4.3 and 4.4 address CEP selection and consumption
policies to completely capture settings such as chronological recent of EP-SPARQL, or
the naive sequencing of triples based on last their appearances like in C-SPARQL.

4.1 Graph Pattern Evaluation Semantics

To cope with graph-based RDF streams, we adapt the graph pattern evaluation semantics
from [14]. There, the evaluation semantics of a SPARQL operator is defined as a function
that takes as input a graph pattern P and a SPARQL dataset DS having a default RDF
graph G, and produces bags of solution mappings: partial functions that map variables
to RDF terms. It is usually denoted as JP KDS(G).

The RSEP-QL evaluation semantics of graph patterns considers the evaluation time
instants and redefines the active graph notion. Given an RSEP-QL dataset SDS and
an identifier ι ∈ ids(SDS) of one of its elements, we name temporal sub-dataset,
denoted by SDS ι, the active element of the dataset. The active element is SDS ι = Gi
if (ι = gi, Gi) ∈ SDS , or SDS ι =Wj(S`) if (ι = wj ,Wj(S`)) ∈ SDS .

Definition 6 (Graph Pattern Evaluation Semantics) Given an RSEP-QL pattern P ,
an active time-varying graph or window identified by ι ∈ ids(SDS ) of a streaming
dataset SDS , and an evaluation time instant t, we define

JP KtSDSι

as the evaluation of P at t over the active element ι in SDS .



We now briefly summarize the evaluation semantics of the graph patterns available in
SPARQL, with a special focus on BGP and window graph patterns from Section 3.3.
Basic Graph Pattern. BGP evaluation in SPARQL is one of the few cases in which
there is an actual access to the data stored in the active RDF graph. The idea behind
the evaluation of BGPs in RSEP-QL is to exploit the SPARQL evaluation semantics.
To make it possible, it is necessary to move from the active element ι of SDS and the
evaluation time instant t to an RDF graph over which the BGP can be evaluated. We
name this RDF graph the snapshot of a temporal sub-dataset at t, and it is defined as:

SDS gi(t) = Gi(t) and SDSwj (t) =
⋃

(Gk,tk)∈Wj(S`,t)
Gk

By exploiting the snapshot of the temporal sub-dataset, it is possible to obtain an RDF
graph given a streaming dataset and an active element. This RDF graph is the one over
which the BGP has to be evaluated, following the SPARQL semantics.

Example 5. Take SDS from Example 3. We have
SDSw2

(12)=
⋃

(Gk,tk)∈W τ
2 [(5,1)](S,12)Gk = G4∪G5 = {:a3 :p :b3, :b1 :q :c1, :b2 :q :c2}.

We can now define the evaluation of a basic graph pattern P as:

JP KtSDSι = JP KSDSι(t) = {µ | dom(µ) = var(P ) and µ(P ) ∈ SDS ι(t)}. (1)

Other SPARQL Graph Patterns. For other graph patterns, we maintain the idea of
SPARQL of defining them recursively [16]. For example, the graph pattern P1 Join P2:

JP1Join P2KtSDSι = JP1KtSDSι ./ JP2KtSDSι (2)

where SDS ι indicates the active time-varying graph or window in the RSEP-QL dataset
SDS and P1, P2 are graph patterns. The evaluation of P1Join P2 consists of joining the
two multisets of solution mappings computed by evaluating P1 and P2 at time t with
regards to the active part SDS ι of the RDF streaming dataset SDS .
Window Graph Pattern. Finally, we define the evaluation semantics of the window
graph patterns. Given a window identifier wj and a graph pattern P , we have that:

JWINDOW wj P KtSDSι = JP KtSDSwj
(3)

The following example shows the application of Equations (3) and (1).

Example 6. Take SDS from Ex. 3 and its sub-temporal-dataset SDSw2
(12) from Ex. 5,

let P = {?x :p ?y}. We have that:

JWINDOW w2 P K12SDSdef
=JP K12SDSw2

=J?x :p ?yKSDSw2
(12)={{?x 7→ :a3, ?y 7→ :b3}}.

4.2 Event Pattern Evaluation Semantics

Similarly to Section 4.1, we define the evaluation semantics of event pattern operators
by decomposing complex patterns into simple ones. The main difference is that this
decomposition process should take into account the temporal aspects related to event
matching, i.e., the evaluation should (i) produce time-annotated solution mappings, and
(ii) control the time range in which a subpattern is processed. We address (i) by defining



the notion of event mapping as a triple (µ, t1, t2) composed by a solution mapping and
two time instants t1 and t2, representing the initial and final time instants that justify the
matching, respectively. We assume that a partial order ≺ to compare timestamps is given.
Depending on particular applications, specific ordering can be chosen. Regarding (ii),
we associate the evaluation with an active window function that sets the boundaries of
the valid ranges for evaluating event patterns.

Definition 7 (Event Pattern Evaluation Semantics) Given an event pattern E, a win-
dow function W (active window), and an evaluation time instant t ∈ ET , we define

⟪E⟫tW
as the evaluation of E in the scope defined by W at t .

Different from graph pattern evaluation semantics, in this case there is no explicit
reference to data. This information is carried in the basic event patterns defined below.
Basic Event Patterns. Similar to BGPs, Basic Event Patterns (BEP) are the simplest
building block. The idea behind their semantics is to produce a set of SPARQL BGP
evaluations over the stream items from a snapshot of a temporal sub-dataset (identified
by wj), restricted by the active window function W :

⟪EVENT wj P⟫tW = {(µ, tk, tk) | µ ∈ JP KGk ∧ (Gk, tk) ∈W •Wj(S`, t)} (4)

Example 7. We show how to evaluate ⟪E2⟫8W id for E2 = (EVENT w2 (?y :q ?z ))
from Example 4. First of all, from Example 2, we have that
W id • SDSw2

(8) =W id •W τ
2 (S, 8) =W τ

2 (S, 8) = (G1, 2), (G2, 4)(G3, 6), (G4, 8).

Now we evaluate J?y :q ?z KGk for 1 ≤ k ≤ 4. Only G3 and G4 have matches, which
are µ2 = {?y 7→ :b1, ?z 7→ :c1} and µ′2 = {?y 7→ :b2, ?z 7→ :c2}. Combining with the
timestamps 6 and 8 when G3 and G4 respectively appear in S, we have:

⟪E2⟫8W id = {(µ2, 6, 6), (µ
′
2, 6, 6), (µ

′
2, 8, 8)}.

It is worth comparing the evaluation semantics of a BEP with the one of a BGP as
defined in Section 4.1. They both exploit the SPARQL BGP evaluation, but while the
former defines an evaluation for each stream item (i.e., an RDF graph), the latter is a
unique evaluation over the merge of the stream items in one RDF graph.
Other Event Patterns. Next is the semantics of other event patterns, starting with those
that identify the first and last event matching a pattern, based on the ordering ≺.

⟪FIRST E⟫tW = {(µ, t1, t2)∈ ⟪E⟫tW |6 ∃(µ′, t3, t4)∈ ⟪E⟫tW : (t3, t4)≺(t1, t2)} (5)

⟪LAST E⟫tW = {(µ, t1, t2)∈ ⟪E⟫tW |6 ∃(µ′, t3, t4)∈ ⟪E⟫tW : (t1, t2)≺(t3, t4)} (6)

Let us now consider the SEQ operator. The evaluation of E1 SEQ E2 is defined as:

⟪E1 SEQ E2⟫tW =

{(µ1∪µ2, t1, t4) | (µ2, t3, t4)∈ ⟪E2⟫tW ∧ (µ1, t1, t2)∈ ⟪µ2(E1)⟫tWt[0,t3−1]•W } (7)

Intuitively, for each event mapping (µ2, t3, t4) that matches E2, Equation (7) seeks for
(a) compatible and (b) preceding event mappings matching E1. The two demands are
guaranteed by introducing constraints on the evaluation of E1:



− (a) is imposed by, in E1, substituting the shared variables with E2 for their values
from µ2, denoted by µ2(E1).
− (b) is ensured by restricting the time range on which input graphs are used to
match µ2(E1): we only consider graphs appearing before t3, thus Wt[0, t3 − 1] •W .

Example 8 (cont’d). We show how ⟪E1 SEQ E2⟫8W id is evaluated. For (µ2, t3, t4) =

({?y 7→ :b1, ?z 7→ :c1}, 6, 6) ∈ ⟪E2⟫8W id , we then evaluate:

⟪µ2(E1)⟫8W id = ⟪EVENT w1 (?x :p :b1)⟫8Wt[0,5]•W id = ⟪EVENT w1 (?x :p :b1)⟫8Wt[0,5] .

Similar to Example 7, we first see that Wt[0, 5] •Wλ
1 (S, 8) = (G1, 2), (G2, 4). Then,

evaluating J?x :p :b1KGk for k = 1, 2 matches in only G1. Therefore, the mapping
satisfying conditions (a) and (b) is (µ1, t1, t2) = ({?x 7→ :a1, ?y 7→ :b1}, 2, 2). Finally,
Equation (7) gives us ({?x 7→ :a1, ?y 7→ :b1, ?z 7→ :c1}, 2, 6).

Similarly, with (µ′2, 6, 6) and (µ′2, 8, 8) from Example 7, we find a compatible and
preceding match ({?x 7→:a2, ?y 7→:b2}, 4, 4) for E1. This gives us two more results:
({?x 7→:a2, ?y 7→:b2, ?z 7→:c2}, 4, 8) and ({?x 7→:a2, ?y 7→:b2, ?z 7→:c2}, 6, 8). ut

Event Graph Pattern. Finally, we define the semantics of the MATCH operator. Being
a graph pattern, its evaluation semantics is defined through the function in Definition 6.
Intuitively, the function acts to remove the time annotations from event mappings and to
produce a bag of solution mappings. Thus, the result of this operator can be combined
with results of other graph pattern evaluations (i.e., other bags of solution mappings).

JMATCH EKtSDSι = {µ | (µ, t1, t2) ∈ ⟪E⟫tW id} (8)

The initial active window function to E is W id , which imposes no time restriction. Such
restrictions can appear later by CEP operators like in Eq (7).

Example 9 (cont’d). Applying MATCH on (E1 SEQ E2) from Example 8 returns:
JMATCH (E1 SEQ E2)K8SDSdef

= {{?x 7→ :ai, ?y 7→ :bi, ?z 7→ :ci} | i = 1, 2}.

4.3 Event Selection Policies

Evaluating the SEQ operator as in Equation (7) takes into account all possible matches
from the two sub-patterns. This kind of evaluation captures only the unrestricted be-
havior of EP-SPARQL and C-SPARQL. With the purpose of formally capturing the
CEP semantics of C-SPARQL and EP-SPARQL, we introduce in this section different
versions of the sequencing operator that allows different ways of selecting stream items
to perform matching, known as selection policies.

Firstly, for C-SPARQL’s naive CEP behavior, Eq. (9) simply picks the two latest
event mappings that match the two sub-patterns and compare their associated timestamps.

⟪E1 SEQ
n E2⟫tW = {(µ1 ∪ µ2, t1, t4) | (t1, t2) ≺ (t3, t4)∧ (9)

(µ1, t1, t2) ∈ ⟪LAST E1⟫tW ∧ (µ2, t3, t4) ∈ ⟪LAST E2⟫tW }
For the chronological and recent settings from EP-SPARQL, we need more involved
operators SEQc and SEQr . In the sequel, let W ? =Wt[0, t3 − 1] •W .



⟪E1 SEQ
c E2⟫tW = {(µ1 ∪ µ2, t1, t4) | (µ2, t3, t4) ∈ ⟪E2⟫tW ∧ (10)

⟪µ2(E1)⟫tW? 6= ∅ ∧ (µ1, t1, t2) ∈ ⟪FIRST µ2(E1)⟫tW? ∧

(6 ∃(µ′2, t′3, t′4)∈ ⟪E2⟫tW : ⟪µ′2(E1)⟫tW? 6=∅ ∧ (t′3, t
′
4)≺(t3, t4))}.

Compared to (7), Equation (10) selects an event mapping (µ2, t3, t4) of E2 that:

– has a compatible event mappings inE1 which appeared before µ2. This is guaranteed
by the condition ⟪µ1(E2)⟫tW? 6=∅ and the window functionW ?=Wt[0, t3−1]•W ;

– is the first of such event mappings. This is ensured by stating that no such (µ′2, t
′
3, t
′
4)

exists, where (t′3, t
′
4) ≺ (t3, t4).

Once (µ2, t3, t4) is found, (µ1, t1, t2) is taken from ⟪FIRST µ2(E1)⟫tW? , which makes
sure that it is the first compatible event that appeared before (µ2, t3, t4). Finally, the
output event matching E1 SEQ

c E2 is (µ1 ∪ µ2, t1, t4).
Equation (11) follows the same principle as Equation (10), except that it selects the

last instead of the first event mappings.
⟪E1 SEQ

r E2⟫tW = {(µ1 ∪ µ2, t1, t4) | (µ2, t3, t4) ∈ ⟪E2⟫tW ∧ (11)

⟪µ2(E1)⟫tW? 6= ∅ ∧ (µ1, t1, t2) ∈ ⟪LAST µ2(E1)⟫tW? ∧

( 6 ∃(µ′2, t′3, t′4)∈ ⟪E2⟫tW : ⟪µ′2(E1)⟫tW? 6=∅ ∧ (t3, t4)≺(t′3, t′4))}.

Example 10 (cont’d). Continue with the setting in Example 8, one can check that:
⟪E1 SEQ

n E2⟫8W id =
{
({?x 7→ :a2, ?y 7→ :b2, ?z 7→ :c2}, 4, 8)

}
;

⟪E1 SEQ
c E2⟫8W id =

{
({?x 7→ :a1, ?y 7→ :b1, ?z 7→ :c1}, 2, 6)
({?x 7→ :a2, ?y 7→ :b2, ?z 7→ :c2}, 4, 6)

}
;

⟪E1 SEQ
r E2⟫8W id =

{
({?x 7→ :a1, ?y 7→ :b1, ?z 7→ :c1}, 2, 6)
({?x 7→ :a2, ?y 7→ :b2, ?z 7→ :c2}, 4, 8)

}
.

4.4 Event Consumption Policies

Selection policies are not sufficient to capture the behavior of EP-SPARQL in the
chronological and recent settings. As described in Section 2, under these settings, stream
items that contribute to an answer are not considered in the following evaluation iterations.
We complete the model by formalizing this feature, known as consumption policies.

Let ET=t1, t2, . . . , tn, . . . be the set of evaluation instants. Abusing notation, we
say that a window function wj appears in an event pattern E, denoted by wj∈̂E, if E
contains a basic event pattern of the form (EVENT wj P ).

Consumption policies which determine input for the evaluation will be covered next.
Def. 8 is about a possible input for the evaluation while Def. 9 talks about the new
incoming input. We first define such notions for a window in an RDF streaming dataset,
and then lift them to the level of structures that refer to all windows in an event pattern.

Definition 8 (Potential Input & Input Structure) Given an RDF streaming dataset
SDS , we denote by Ii(wj) ⊆ SDSwj (ti) a potential input at time ti of the window
identified by wj . For initialization purposes, we let I0(wj) = ∅.

Given an event pattern E, an input structure Ii of E at time ti is a set of potential
inputs at ti of all windows appearing in E, i.e., Ii = {Ii(wj) | wj∈̂E}.



Definition 9 (Delta Input Structure) Given an RDF streaming dataset SDS and two
consecutive evaluation times ti−1 and ti, where i > 1, the new triples arriving at a
window wj are called a delta input, denoted by ∆i(wj) = SDSwj (ti) \ SDSwj (ti−1).
For initialization purposes, let ∆1(wj) = SDSwj (t1).

Given an event pattern E, a delta input structure at time ti is a set of delta inputs
at ti of all windows appearing in E, i.e., ∆i = {∆i(wj) | wj∈̂E}.

We can now define consumption policies in a generic sense.

Definition 10 (Consumption Policy & Valid Input Structure) A consumption policy
function P takes an event pattern E, a time instance ti ∈ ET , and a vector of additional
parameters p depending on the specific policy, and produces an input structure for E.

The resulted input structure is called valid if it is returned by applying P on a set
valid parameters p, where the validity of p is defined based on each specific policy.

This generic notion can be instantiated to realize specific policies in practice. For example,
the policy Pu that captures the EP-SPARQL’s unrestricted setting requires no further
parameters, thus p = ∅ and returns full input at evaluation time. To be more concrete:

Pu(E, ti) = {Ii(wj) = SDSwj (ti) | wj∈̂E}
For the chronological and recent settings, we describe here only informally the two
respective functions Pc and Pr. Their additional parameters include Ii−1 (the input
structure at ti−1) and ∆i (the delta input structure at ti), and they return an input
structure Ii such that its elements Ii(wj) contain ∆i(wj) and the triples in Ii−1(wj)
that are not used to match E at ti−1. The validity of input can be guaranteed by starting
the evaluation with I1(wj) = SDSwj (t1) which is valid by definition. For the formal
description of Pc and Pr, we refer the reader to the extended version of the paper.1

We now proceed to incorporate consumption policies into event patterns evaluation.
The idea is to execute the evaluation function ⟪.⟫ with a policy function P , i.e., to
evaluate an event pattern E with ⟪E⟫tW,P . Then, when the evaluation process reaches a
BEP at leafs of the operator tree, P is used to filter out already consumed input. Formally:

⟪EVENT wj P⟫tiW,P = JP KI ,

where I = Ii(wj) ∩ (
⋃

(Gk,tk)∈W•Wj(S`,ti)
Gk) and Ii(wj) ∈ Ii = P(E, ti, Ii−1, ∆i).

Example 11. Similar to Example 10, one has

⟪E1 SEQ
c E2⟫8W id ,Pc =

{
({?x 7→ :a1, ?y 7→ :b1, ?z 7→ :c1}, 2, 6)
({?x 7→ :a2, ?y 7→ :b2, ?z 7→ :c2}, 4, 6)

}
.

Furthermore, carrying out the evaluation under the chronological policy (Pc) will con-
sume G1, G2, and G3. Then, at time t = 10, there is no (:a1 :p :b1) available to match
the new coming triple (:b1 :q :c1), and no event of the pattern E1 SEQ

c E2 is produced.

5 Conclusions & Outlook

The evaluation semantics of graph and event patterns presented in this paper constitutes
a milestone towards defining a holistic query model for RSP that combines features from

1
http://tinyurl.com/ekaw2016-195-ext (Hosted by Google Drive)



DSMS and CEP. We showed in [14] that RSP-QL, the model underlying RSEP-QL,
covers the DSMS features of major RSP languages, and in this work, we introduced
the CEP features. Moreover, RSEP-QL models both event patterns and their evaluation
semantics taking into account the presence of selection and consumption policies. These
policies are key to determine the answer that a query should produce for a given input
stream. Thus, it is not possible to consider them as only technical/implementation related.

RSEP-QL EP-SPARQL/C-SPARQL

Wλ + SEQ EP-SPARQL unrestricted
Wλ + SEQc + Pc EP-SPARQL chronological
Wλ + SEQr + Pr EP-SPARQL recent
W τ + SEQn C-SPARQL SEQ (timestamp)
W τ C-SPARQL time-window

Table 1: Coverage of DSMS/CEP features of
RSEP-QL compared to EP-SPARQL and C-
SPARQL.

We have also shown that RSEP-QL com-
plies with the set of requirements described
in Section 2. First, it processes RDF graph-
based streams [R1]. It is also capable of
capturing the DSMS features of representa-
tive RSP languages [R2], as an inheritance
from the expressivity of RSP-QL. Moreover,
RSEP-QL captures the behavior of the se-
quential event pattern matching features of
EP-SPARQL and C-SPARQL [R3], includ-
ing the different selection and consumption

policies that they provide. Table 1 shows the equivalence of the main features in RSEP-
QL with their counterparts in EP-SPARQL and C-SPARQL. For instance, one can
observe that an EP-SPARQL sequence pattern (with recent policy) can be captured by
the SEQr operator and the Pr function on a landmark window in RSEP-QL.

Our formalization is able to capture a rich set of operators including time-based
sliding windows and event patterns such as sequencing, and combines them. As a
result, RSEP-QL offers expressivity beyond the capabilities of current RSPs. For exam-
ple, RSEP-QL allows to define event patterns over more than one streams, e.g., given
E1 SEQ E2, E1 and E2 can match over different streams. It is not possible to express
this with an EP-SPARQL or C-SPARQL query, as the first operates on a unique stream,
while the latter merges different input streams in a unique one.

Furthermore, the expressivity of RSEP-QL allows defining complex queries that
combine both windows and event patterns. For instance, consider that in a social network
we want to find the post made by a user that is then followed by a popular user, defined
as someone that gets a lot of mentions in the last hour and has a lot of followers. In this
case, a time window is needed to keep track of the number of mentions in the last hour.
Then the sequence pattern is required to capture the fact that someone is followed after
he made a post. The contextual information is used to look for the number of followers of
a person, to determine if he is popular. Another example consists in enriching the event
pattern matching with information from contextual streaming data and other streams.

Future works include enriching RSEP-QL with more CEP operators, e.g., DUR-
ING and NOT, and realizing other selection and consumption policies in CEP, e.g.,
strict/partition contiguity, skip till next match, and skip till any match [1] in RSEP-QL.

Another important aspect of this work is its compatibility with alternative data
models. Even though we chose a particular model based on timestamped graphs, one
can see that it can be converted, or in some case, extended if necessary, to other similar
models. For example, data streams with interval timestamps can be easily incorporated
into the event pattern evaluation semantics. Finally, the RSEP-QL model can also be



helpful for the RSP community, as it provides the most comprehensive query processing
model for RDF streams so far. We plan to align our model to the latest proposals of
the W3C RSP group, as well as study how it can be adapted for the different profiles
proposed in the RSP abstract model.
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