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Abstract. We are witnessing a growing interest for Web applications
that i) require to continuously combine highly dynamic data stream
with background data and ii) have reactivity as key performance indica-
tor. The Semantic Web community showed that RDF Stream Processing
(RSP) is an adequate framework to develop this type of applications.
However, when the background data is distributed over the Web, even
RSP engines risk losing reactiveness due to the time necessary to ac-
cess the background data. State-of-the-art RSP engines remain reactive
using a local replica of the background data, but such a replica progres-
sively become stale if not updated to reflect the changes in the remote
background data.
For this reason, recently, the RSP community investigated maintenance
policies (collectively named Acqua) that guarantee reactiveness while
maximizing the freshness of the replica. Acqua’s policies apply to queries
that join a basic graph pattern in a window clause with another basic
graph pattern in a service clause. In this paper, we extend the class
of queries considered in Acqua adding a FILTER clause that selects
mapping in the background data. We propose a new maintenance policy
(namely, the Filter Update Policy) and we show how to combine it with
Acqua policies. A set of experimental evaluations empirically proves the
ability of the proposed policies to guarantee reactiveness while keeping
the replica fresher than with the Acqua policies.

1 Introduction

The variety and the velocity of Web data is growing. Many Web applications
require to continuously answer queries that combine dynamic data streams with
quasi-static background data distributed over the Web. Consider, for instance, a
Web advertising company; it may want to continuously detect influential Social
Network users in order to ask them to endorse its commercials. Such a company
can encode its information need in a continuous query like: every minute give me
the ID of the users that are mentioned on Social Network in the last 10 minutes
whose number of followers is greater than 100,000.

What makes continuously answering this query challenging is the fact that
the number of followers of a user (in the background data) tends to change when
she is mentioned (in the social stream). There may be users, whose number of
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followers was slightly below 100,000 in the last evaluation (and, thus, were not
included in the last answer), who may now have slightly more than 100,000
followers (and, thus, are in the current answer).

If the application requires an answer every minute and fetching the current
number of followers for a user (mentioned in the social stream) requires around
100 milliseconds1, just fetching this information for 600 users takes the entire
available time. In other words, fetching all the background data may put the
application at risk of losing reactiveness, i.e., it may not be able to generate an
answer while meeting operational deadlines.

The RDF Stream Processing (RSP) community has recently started address-
ing this problem. S.Dehghanzadeh et al. [5] showed that the query above can be
written as a continuous query for existing RSP engines. This query has to use the
a SERVICE clause2 which is supported by C-SPARQL [3], SPARQLstream [4]
and CQELS-QL [10] and RSP-QL [6].

For instance, Listing 1.1 shows how it can be declared in RSP-QL. Line 1
registers the query in the RSP engine. Line 2 describes how to construct the
results at each evaluation. Line 4, every minute, selects from a window opened
on the stream S the users mentioned in the last 10 minutes. Line 5 asks the
remote service BKG to select the number of followers for the users mentioned
in the window. Line 6 filters out, from the results of the previous join, all those
users whose number of followers is below the 100,000 (namely, the Filtering
Threshold).

1 REGISTER STREAM <:Influencers > AS

2 CONSTRUCT {?user a :influentialUser}

3 WHERE {

4 WINDOW W(10m,1m) ON S {?user :hasMentions ?mentionsNumber}

5 SERVICE BKG {?user :hasFollowers ?followersCount }

6 FILTER (? followersCount > 100000)

7 }

Listing 1.1: Sketch of the query studied in the problem

However, S.Dehghanzadeh et al. [5] also observed that, if many users are men-
tioned in the window, the SERVICE clause cannot be entirely evaluated every
minute or the RSP engine would lose reactiveness. As a solution, they propose
to compute the answer at the SERVICE clause at query registration time and to
store the resulting mappings in a local replica. Then, they propose several main-
tenance policies (collectively named Acqua) that guarantee reactiveness while
maximizing the freshness of the mappings in the replica.

Acqua policies were empirically demonstrated to be effective, but the ap-
proach focuses only on the JOIN and does not optimize the FILTER clause (at

1 100 millisecond is the average response time of the REST APIs of Twitter
that returns the information of a user given her ID. For more information see
https://dev.twitter.com/rest/reference/get/users/lookup.

2 http://www.w3.org/TR/sparql11-federated-query/
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line 6). So, Aqua policies may decide to refresh a mapping that will be discarded
by the FILTERING clause. In this case, Acqua policies are throwing away a unit
of budget. This paper, instead, investigates maintenance policies that explicitly
consider the FILTER clause and exploit the presence of a Filtering Threshold
that selects a subset of the mappings returned by the SERVICE clause. By try-
ing to avoid using the refresh budget to update mappings that will be discarded
by the FILTER clause, our new policy has the potential to address the limits of
Acqua policies.

Let ΩW be the set of solution mappings returned from a WINDOW clause,
ΩS be the one returned from a SERVICE clause and ΩR be the one stored in
the replica. We formulate our research question as:

Q given a query that joins the set of solution mappings ΩW returned from
a WINDOW clause with ΩS returned from a SERVICE clause and filters
them applying a Filtering Threshold FT to a variable ?x that appears
in ΩS(i.e., for each mapping µS ∈ ΩS it checks µS(?x) > FT ), how
can we refresh the local replica of solution mappings ΩR in order to
guarantee reactiveness while maximizing the freshness of the mappings in
the replica?

To answer this question, we formulate two hypotheses:

H.1 the replica can be maintained fresher than when using Acqua policies, if
we first refresh the mappings µR ∈ ΩR for which µR(?x) is closer to the
Filtering Threshold.

H.2 the replica can be maintained fresher than when using Acqua policies by
first selecting the mappings as in Hypothesis H.1 and, then, applying the
Acqua policies.

To study Hypothesis H.1, we propose a policy (namely, Filter Update Policy)
for refreshing the replica that selects mappings µR for which µR(?x) is closer
to the Filtering Threshold and we experimentally demonstrate its effectiveness
comparing their performances with those of the Acqua policies. Similarly, to
study Hypothesis H.2, we extend Acqua policies combining them with the Filter
Update Policy and we experimentally demonstrate their efficiency comparing
their performance against those of the Acqua policies.

The remainder of the paper is organized as follows. Section 2 defines the
relevant background concepts. Section 3 introduces our proposed solution for
refreshing the replica of background data. Section 4 provides experimental eval-
uation for investigating our hypotheses. Section 5 reviews related existing works
and finally, Section 6 concludes and presents some future works.

2 Background

Data model. RDF Stream Processing extends the RDF data model and the
SPARQL query model in order to take into account the velocity of the data and
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its evolution over time. The RDF data model is extended in two directions: RDF
streams and background data.

An RDF stream S is a potentially unbounded sequence of timestamped
data items (di, ti):

S = (d1, t1), (d2, t2), . . . , (dn, tn), . . . ,

where di is a RDF statement, ti the associated time instant and, for each item i,
it holds ti ≤ ti+1, i.e. stream items are in a non-decreasing time order. An RDF
statement is a triple (s, p, o) ∈ (I ∪B)× (I)× (I ∪B ∪ L), where I is the set of
IRIs, B is the set of blank nodes and L is the set of literals.

Background data denotes the portion of data that does not change, or
changes very slowly w.r.t. the RDF stream, e.g. RDF data exposed through
SPARQL endpoints, stored in RDF repositories or embedded in Web pages. In
this case, the time dimension is considered through the notions of time-varying
and instantaneous graphs. A time-varying graph Ḡ is a function that relates
time instants to RDF graphs; fixed a time instant t, Ḡ(t) is an instantaneous
RDF graph.

Query model. In the following we present RSP-QL [6], an extension of SPARQL
to process RDF streams. The main difference is given by the fact that RSP-QL
follows the continuous evaluation paradigm, i.e., every query is issued once (reg-
istered) and evaluated multiple times, as the data changes over time, in contrast
with the one-time evaluation of SPARQL, i.e. every query is evaluated once.
A SPARQL query [12] is defined through a triple (E,DS,QF ), where E is the
algebraic expression, DS is the data set and QF is the query form. An RSP-
QL extends SPARQL by introducing a quadruple (SE, SDS,ET,QF ), where
SE is an RSP-QL algebraic expression, SDS is an RSP-QL dataset, ET is the
sequence of time instants on which the evaluation occurs, and QF is the Query
Form.

Key to RSP-QL is the notion of time-based sliding window W, depicted
in Figure 1. W that takes as input an RDF stream S and produces a time-varying
graph W(S) = GW. W is defined through two parameters ω and β, respectively
the width and slide parameters. A sliding window generates a sequence of fixed
windows, i.e. portion of the underlying stream defined in a time interval (o, c]
that can be queried as RDF graphs. Given a sliding window W and two generated
consecutive windows Wi, Wi+1 defined respectively in (oi, ci] and (oi+1, ci+1], it
holds: ci − oi = ci+1 − oi+1 = ω, and oi+1 − oi = β.

An RSP-QL data set is a set composed by one default time-varying graph
Ḡ0, a set of time-varying named graphs {(ui, Ḡi)}, where ui ∈ I is the name
of the element; and a set of RDF streams associated to named sliding windows
{(uj ,Wj(Sk))}. Fixed an evaluation time instant, it is possible to determine a
set of instantaneous graphs and fixed windows, i.e. RDF graphs, and use them
as input data for the algebraic expression evaluation.

An algebraic expression SE is a streaming graph pattern, composed by oper-
ators mostly inspired by relational algebra, such as joins, unions and selections.
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Fig. 1: The time-based sliding window operator dynamically selects a finite por-
tion of the stream.

In addition to the ones defined in SPARQL, RSP-QL adds a set of *streaming
operators (RStream, IStream and DStream), to transform the query result in
an output stream. In addition to I, B and L, let V be the set of variables (dis-
jointed with the other sets); graph patterns are expressions recursively defined
as follows:

– a basic graph pattern (i.e. set of triple patterns (s, p, o) ∈ (I ∪B ∪ V )× (I ∪
V )× (I ∪B ∪ L ∪ V )) is a graph pattern;

– let P be a graph pattern and F a built-in condition, P FILTER F is a
graph pattern;

– let P1 and P2 be two graph patterns, P1 UNION P2, P1 JOIN P2 and
P1 OPT P2 are graph patterns;

– let P be a graph pattern and u ∈ (I ∪ V ), the expressions SERV ICE u P ,
GRAPH u P and WINDOW u P are graph patterns;

– let P be a graph pattern, RStream P , IStream P and DStream P are
streaming graph patterns.

As in SPARQL, the query semantics rely on the notion of solution mapping,
a function that maps variables to RDF terms, i.e., µ : V → (I ∪ B ∪ L). Let
dom(µ) be the subset of V where µ is defined: two solution mappings µ1 and
µ2 are compatible (µ1 ∼ µ2) if the two mappings assign the same value to
each variable in dom(µ1)∩ dom(µ2). Let now Ω1 and Ω2 be two sets of solution
mappings, the join is defined as:

Ω1 on Ω2 = {µ1 ∪ µ2|µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2};

Evaluation of a graph pattern produces a set of solution mappings; RSP-
QL extends the SPARQL evaluation function by adding the evaluation time
instant: let JP Kt

SDS(Ḡ)
be the evaluation of the graph pattern P at time t having

Ḡ ∈ SDS as active time-varying graph. For the sake of space, in the following
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we present the evaluation of the operators used in the remaining of the work.
The evaluation of a BGP P is defined as:

JP KtSDS(Ḡ) = JP KSDS(Ḡ,t)

where the right element of the formula is the SPARQL evaluation [12] of P over
SDS(Ḡ, t). Being a SPARQL evaluation, SDS(Ḡ, t) identifies an RDF graph: an
instantaneous graph Ḡ(t) if Ḡ is a time-varying graph, a fixed window generated
by W(S) at time t (W(S, t) = ḠW(t)) if Ḡ is a time-based sliding window.
Evaluations of JOIN, FILTER and WINDOW3 are defined as follows:

JP1 JOIN P2KtSDS(Ḡ) = JP1KtSDS(Ḡ) on JP2KtSDS(Ḡ)

JP FILTER F KtSDS(Ḡ) = {µ|µ ∈ JP KtSDS(Ḡ) and µ satisfies F}

JWINDOW u P KtSDS(Ḡ) = JP KtSDS(W) such that (u,W) ∈ SDS

Finally, the evaluation of SERV ICE u P consists in submitting the graph
pattern P to a SPARQL endpoint located at u and produces a set ΩS with the
resulting mappings.

Acqua. The challenge given by the Web is the distribution of the data in several
sources. RDF Stream Processing offers solutions to integrate and process them.
That means, on the one hand, RSP engines can register to RDF stream sources
and receive stream items; on the other hand, RSP engines can access background
data stored behind SPARQL endpoints by using the federated SPARQL exten-
sion [1]. As analyzed in [5], the time to access and fetch the remote background
data can be very high, and have a sensible impact on the reactiveness of the
RSP engine in answering the query. The solution presented in [5] work applies
to queries where the algebraic expression SE contains the graph patterns:

(WINDOW u1 P1) JOIN (SERV ICE u2 P2),

and consists in introducing a replica R to store the result of (SERV ICE u2 P2).
To keep R up-to-date, a maintenance process is introduced. It is depicted

in Figure 2, and it is composed by three elements: a proposer, a ranked and
a maintainer. (1) The proposer selects a set C of candidate mappings for the
maintenance; (2) the ranker orders C by using some relevancy criteria; (3) the
maintainer refreshes the top γ elements of C (the elected set E), where γ is
named refresh budget and encodes the number of requests the RSP engine can
submit to the remote services without losing reactiveness. After the maintenance,
(4) the join operation is performed.

The paper proposes several algorithms to be used as proposer and ranker; in
particular, the one that shows the best performance is the combination of WSJ
(proposer) and WBM (ranker). WSJ builds the candidate set by selecting the
mappings inR compatible with the ones from the evaluation of (WINDOW u1 P1).

3 In the following, we assume u ∈ I.
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Fig. 2: The framework proposed in [5] to address the problem of joining streaming
and remote background data.

The latter exploits the best before time, i.e. an estimation of the time on which
one mapping in R would become stale. That means, WBM orders the candidate
set assigning to each mapping µi ∈ C a score defined as:

scorei(t) = min(Li(t), Vi(t)),

where t is the evaluation time, Li(t) is the remaining life time, i.e. the number
of future evaluations that involve the mapping, and Vi(t) is the normalized
renewed best before time, i.e., the renewed best before time normalized
with the sliding window parameters. The intuition behind WBM is to prioritize
the refresh of the mappings that contribute the most to the freshness in the
current and next evaluations. That means, WBM identifies the mappings that
are going to be used in the upcoming evaluations (remaining life time) and that
allows saving future refresh operations (normalized renewed best before time).
Formally, Li and Vi are defined as:

Li(t) =

⌈
ti + ω − t

β

⌉
, (1)

Vi(t) =

⌈
τi + Ii(t)− t

β

⌉
, (2)

where ti is the time instant associated to the mapping µi, τi is the current best
before time and Ii(t) is the change interval, that captures the remaining time
before the next expiration of µi. It is worth noting that Ii is potentially unknown
and could require an estimator.

Other rankers proposed in [5] are inspired to the random (RND) and Least-
Recently Used (LRU) cache replacement algorithms. The former randomly ranks
the mappings in the candidate set; the latter orders C by the time of the last
refresh of the mappings: the less recently a mapping have been refreshed in a
query, the higher is its rank.

3 Proposed Solution

In this section, we introduce our proposed solution. In Section 3.1 we discuss the
proposed Filter Update Policy as a ranker for maintenance process of replica R.
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Section 3.2 shows how we can improve the Acqua policies by integrating them
with our Filter Update Policy.

3.1 Filter Update Policy

In this section, we introduce our Filter Update Policy for refreshing the replica
R of the background data. As already stated in Section 1, we consider a class
of SPARQL continuous queries where the algebraic expression SE contains the
graph patterns (see Listing 1.1 for an example):

(WINDOW u1 P1) JOIN ((SERV ICE u2 P2) FILTER F ),

where F is either ?x < FT or ?x > FT , ?x is a variable in P2 and FT is
the Filtering Threshold declared in the FILTER clause.

The result of SERVICE clause is stored in the replica R. The maintenance
process introduced in Section 2 consists of the following components: the pro-
poser, the ranker and the maintainer. In our solution the proposer selects the set
C of candidate mappings for the maintenance. The Filter Update Policy com-
putes the elected set E ⊆ C of mappings to be refreshed as a ranker and, finally,
the maintainer refreshes the mappings in set E .

For each mapping in the replica define as µR, our Filter Update Policy i)
computes how close is the value associate to the variable ?x in the mapping µR

to the Filtering Threshold FT and ii) selects the top γ ones for refreshing replica
(where γ is the refresh budget). In order to compute the distance between the
value of ?x in mapping µR and Filtering Threshold FT , we define the Filtering
Distance FD of mapping µR as:

FD(µR) = |µR(?x)−FT | (3)

If the value associated to ?x smoothly changes over time 4, then, intuitively,
the smaller the Filtering Distance of a mapping in the last evaluation, the higher
is the probability to cross the Filtering Threshold FT in the current evaluation
and, thus, to affect the query evaluation. For instance in Listing 1.1, for each
user we compute the Filtering Distance between the number of followers and the
Filtering Threshold FT =100,000. Users, whose numbers of followers were closer
to 100,000 in the last evaluation, are more likely to affect the current query
evaluation.

Algorithm 1 shows the pseudo-code of the Filter Update Policy. For each
mapping in the candidate mapping set C, it computes the Filtering Distance
as the absolute difference of the value ?x of mapping µR and the Filtering
Threshold FT in the query (Line 1–3). Then, it orders the set C based on the
absolute differences (Line 4). The set of elected mapping E is created by getting

4 With the wording smoothly changes over time we mean if ?x = 98 in the previous
evaluation and ?x = 101 in the current evaluation, in next evaluation it is more
likely that ?x = 99 than jumping to ?x = 1000.
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the top γ ones from the ordered set of F (Line 5). Finally, the local replica
R is maintained by invoking the SERVICE operator and querying the remote
SPARQL endpoint to get fresh mappings and replace them in R (Line 6–9).

Algorithm 1: The pseudo-code of the Filter Update Policy

1 foreach µR ∈ C do
2 FD(µR) = |µR(?x)−FT | ;
3 end

4 order C w.r.t. the value of FD(µR);
5 E = first γ mappings of F ;

6 foreach µR ∈ E do
7 µS = ServiceOp.next(JoinVars(µR));

8 replace µR with µS in R;

9 end

3.2 Integrating Filter Update Policy with Acqua’s ones

It is worth to note that Filter Update Policy can be combined with those pro-
posed in Acqua. In the maintenance process introduced in Section 2, first, the
proposer generates the candidate set C, then the update policy (ranker) selects
a set of mappings E ⊂ C to be refreshed in replica R. We propose to integrate
our Filter Update Policy in the maintenance process.

Algorithm 2 shows the pseudo-code that integrates the Filter Update Policy
with Acqua ones. It is worth to note that this algorithm requires a parameter,
namely Filtering Distance Threshold FDT . For each mapping in the candidate
mapping set C, it computes the Filtering Distance (Line 1–2). If the difference is
smaller than Filtering Distance Threshold FDT , it adds the mapping to the set
F (Line 3–5). Given the set F , the refresh budget γ, and the update policy name
(RND, LRU, WBM), the function UP considers the set F as the candidate set
and applies the policy on it (Line 7).

Algorithm 2: The pseudo-code of integrating Filter Update Policy with
Acqua’s ones

1 foreach µR ∈ C do
2 FD(µR) = |µR(?x)−FT |
3 if FD(µR) < FDT then
4 add µR to F ;
5 end

6 end
7 UP (F , γ, update policy);



10

We respectively name the three adapted policies WSJ-RND.F, WSJ-LRU.F
and WSJ-WBM.F. In all of them, the candidate set is selected considering the
mappings that are closer to the Filtering Threshold FDT .

4 Experiments

In this section, we experimentally verify our hypotheses. In Section 4.1 we intro-
duce the experimental setting that we use to check the validity of our hypotheses.
In Section 4.2 we discuss about the experiments related to our first hypothesis
and show the related result. Finally, Section 4.3 shows the results related to the
second hypothesis.

4.1 Experimental Setting

As experimental environment, we use an Intel i7 @ 1.8 GHz with 4 GB memory
and an hdd disk. The operating system is Mac OS X Lion 10.9.5 and Java
1.7.0.67 is installed on the machine. We carry out our experiments by extending
the experimental setting of Acqua [5].

The experimental data sets are composed by streaming and background data.
The streaming data is collected from 400 verified users of Twitter for three hours
of tweets using the streaming API of Twitter. The background data is collected
invoking the Twitter API, which returns the number of followers per user, every
minute during the three hours we were recording the streaming data. As a result,
for each user the background data contain a time-series that records the number
of followers.

In order to control the selectivity of the filtering condition, we design a trans-
formation of the background data that randomly selected a specified percentage
of the users (i.e., 10%, 20%, 25%, 30%, 40% and 50%) and, for each user, trans-
lates the time-series, which captures the evolution overtime of the number of
followers, to be sure that it crosses the Filtering Threshold5 at least once dur-
ing the experiment. In particular, for each user, first, we find the minimum and
maximum number of followers; then, we define the MaxDifference equal to the
difference of minimum number of followers and Filtering Threshold. We also de-
fine the MinDifference equal to the difference of maximum number of followers
and Filtering Threshold. Finally, we randomly generate a number between Min-
Difference and MaxDifference and we add it to each value of the time-series of
the number of followers of the selected user.

It is worth to note that this translation does not alter the nature of the
evolution over time of the number of followers, it only moves the entire time-series
so that it crosses the Filtering Threshold at least once during the experiment. If
the original time-series of the number of followers is almost flat (i.e., it slightly
moves up and down around a median) or it is fast growing/shrinking; then the

5 The value of the Filtering Threshold is chosen to guarantee that no one of the original
time-series crosses it.
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translated time-series will have the same trend. The only effect of the translation
is to control the selectivity of the filter operator.

In order to reduce the risk to introduce a bias in performing the translation,
we repeat the procedure 10 times for each percentage listed above, generating
10 different test data sets for each percentage. We name each group of test data
sets using its percentage; for example DS10% identifies the 10 data sets in which
the number of followers of 10% of the users crosses the Filtering Threshold at
least once during the experiment.

We use the query presented in Section 1. For each policy we run 140 iterations
of the query evaluation.

In order to investigate our hypotheses, we set up an Oracle that, at each
iteration i, certainly provides corrects answers Ans(Oraclei) and we compare
its answers with the possibly erroneous ones of the query Ans(Qi). Given that
the answer to the query in Listing 1.1 is a set of users’ IDs, we use Jaccard
distance to measure diversity of the set generated by the query and the one
generated by the Oracle. The Jaccard index is commonly used for comparing
the similarity and diversity of overlapping sets (e.g., A and B). The Jaccard
index J is defined as the size of the intersection divided by the size of the

union of the sets (J(A,B) = |A∩B|
|A∪B| ). The Jaccard distance dJ , which measures

dissimilarity between sets, is complementary to the Jaccard index and is obtained
by subtracting the Jaccard index from 1 (dJ(A,B) = 1− J(A,B)).

In our experiments, we compute the Jaccard distance for each iteration of
the query evaluation. For this reason, we also introduce the cumulative Jaccard
distance at the kth iteration dCJ (k) as:

dCJ (k) =

k∑
i=1

dJ(Ans(Qi), Ans(Oraclei))

where dJ(Ans(Qi), Ans(Oraclei)) is the Jaccard distance of iteration i.

4.2 Experiment 1

This experiment investigates our first hypothesis (H.1). In order to verify the
hypothesis, we compare our policy with Acqua’s ones. The worst maintenance
policy is WST which does not refresh the replica R during the evaluation and,
thus, is an upper bound of errors. We use WSJ as proposer for all maintenance
policies. As described in Section 2, WSJ selects the mappings from the ones
currently involved in the evaluation and creates the candidate set C. For ranker
we use RND, LRU, and WBM, which are introduced in Section 2. WSJ-RND
update policy randomly selects the mappings while WSJ-LRU chooses the least
recently refreshed mapping. WSJ-WBM identifies the possibly stale mappings
and choose them for maintenance.

In this experiment, we consider the refresh budget γ equal to 3. We select the
10 background data sets DS25% (those where the number of followers of 25% of
users cross the Filtering Threshold) and run 140 iterations of query evaluation
over each of the 10 different background data sets. Figure 3 shows the result of
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(a) The Best Case (b) The Worst Case

(c) The Average (d) Distribution of dCJ over evaluations

Fig. 3: Result of experiment 1 that investigates Hypothesis H.1 testing our Filter
Update Policy and the State-of-the-Art policies proposed in Acqua [5] over the
10 data sets in DS25%.

the experiment. Figures 3(a) and 3(b)) respectively show the best and the worst
runs. Figure 3(c) presents the average of the results obtained with the 10 data
sets. As the result shows, the Filter Update Policy is the best one in all cases.
The WSJ-WBM is better than the WSJ-RND and the WSJ-LRU in average and
in the worst case, but the WSJ-LRU is better than WSJ-WBM in the best case.
As expected, the WST policy is always the worst one.

Figure 3(d) shows the distribution of cumulative Jaccard distance at the 140th

iteration obtained with the 10 data sets DS25%. As the result shows, the Filter
Update Policy outperforms other policies in 50% of the cases. Comparing the
WSJ-WBM policy with WSJ-RND and WSJ-LRU policies, WSJ-WBM performs
better than WSJ-RND in 50% of the cases. The WSJ-LRU Policy also perform
better than WSJ-RND in average. As expected, the WST policy has always the
highest cumulative Jaccard distance.

To check the sensitivity to the filter selectivity (i.e., in the evaluated case, to
the percentage of users whose number of followers is crossing the filtering thresh-
old, we repeat the experiment with different data sets in which the percentage
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(a) Compare Percentages (b) Compare Refresh Budgets

Fig. 4: Result of experiment that investigates how the results presented in Fig-
ure 3 change using different percentages and refresh budgets.

is changed. Keeping the refresh budget γ equal to 3, we run experiments with
the data sets DS10%, DS20%, DS30%, DS40%, DS50%. As for the DS25%, we
generate 10 data sets for each value of percentage and run the experiment on
them. For each data set and each policy we compute the average, the first quar-
tile, and the third quartile of cumulative Jaccard distance at the 140th iteration
over 10 data sets. Figure 4(a) shows the obtained results. The Filter Update
Policy has better performance than the other ones for DS10%, DS20%, DS25%
and DS30% . Intuitively, in those data sets, we have fewer users whose number
of followers crosses the Filtering Threshold, so we have higher probability of se-
lecting the correct user for updating. The result also shows that the behavior of
WSJ-WBM policy is stable over different percentages and performs better than
Filtering Update Policy over data sets DS40% and DS50%.

In order to check the sensitivity to the refresh budget, we repeat the experi-
ment with different refresh budgets. We set the refresh budget equals to 1, 2, 3,
4, and 5 in different experiments and run them over 10 data set DS25%. Figure
4(b) shows the average, the first quartile, and the third quartile of cumulative
Jaccard distance at the 140th iteration over 10 data sets for different policies and
budgets. The cumulative Jaccard distance in WST does not change for differ-
ent budgets, but for all other policies the cumulative Jaccard distance decreases
when the refresh budget increases; this means that higher refresh budgets always
leads to fresher replica and less errors.

4.3 Experiment 2

We run a second experiment in order to investigate our second hypothesis (H.2).
We compare the performances of WSJ-RND.F, WSJ-LRU.F, and WSJ-WBM.F,
which respectively combine our Filtering Update Policy with WSJ-RND, WSJ-
LRU and WSJ-WBM, with the Filter Update Policy using data sets DS%25. We
set the Filtering Distance Threshold FDT parameter to 1,000. As explained in
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(a) The Best Case (b) The Worst Case

(c) The Average (d) Distribution of dCJ over evaluations

Fig. 5: Result of experiment that combine Filter policy with Acqua’s ones to
investigate Hypothesis H.2.

Section 3, those new policies, first, create the candidate set C, then they reduce
the candidate set by omitting the users that have Distance Threshold greater
than 1000 and, finally, they apply the rest of the Acqua policy to the candidate
set which selects the mappings for refreshing in the replica R.

Figure 5 shows the result of the experiment. In Figure 5(a) the chart shows
the cumulative Jaccard distance across the 140 iterations in the best run. In this
case the Filter Update policy performs better in most of the iterations. Figure
5(b) shows the worst case, where the WSJ-LRU.F policy is the best one in all the
iterations. Figure 5(c) shows the average performance of the policies. The WSJ-
LRU.F policy is the best one also in this case. Figure 5(d) shows the distribution
of the cumulative Jaccard distance over 10 different data sets DS%25. The WSJ-
LRU.F policy performs better than WSJ-RND.F and WSJ-WBM.F in most of
the cases. The WSJ-WBM.F Policy performs better than WSJ-RND.F policy in
most of the cases.

To check the sensitivity to the filter selectivity, we repeat the experiment with
different data sets in which this percentage is changed. We run experiments over
the data sets DS10%, DS20%, DS25%, DS30%, DS40%, DS50% , while keeping
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(a) Compare Percentages (b) Compare Refresh Budgets

Fig. 6: Result of experiment that investigates how the results presented in Fig-
ure 5 change using different percentages and refresh budgets.

the refresh budget γ equal to 3. We generate 10 data sets for each value of
percentage and run the experiment over them. For each data set and each policy
we compute the average, the first quartile, and the third quartile of cumulative
Jaccard distance at the last iteration over 10 data sets. Figure 6(a) shows the
obtained results. The WSJ-LRU.F policy always has better performance than the
other ones. The behavior of WSJ-LRU.F, and WSJ-WBM.F policies are stable
over different percentages. The Filter Update Policy has better performance than
WBM.F for DS10%, DS20%, DS25% and DS30% . In those data sets, we have
fewer users whose number of followers crosses the Filtering Threshold, and with
higher probability we select the correct user for updating.

We repeat the experiment with different refresh budgets to check the sensi-
tivity of the result to the refresh budget. We set the refresh budget equals to 1, 2,
3, 4, and 5 in different experiments and run them over 10 data set DS25%. Figure
6(b) shows the average, the first quartile, and the third quartile of cumulative
Jaccard distance at the last iterations over 10 data sets for different policies and
budgets. The cumulative Jaccard distance in WST does not change for different
budgets, but for all other policies when the refresh budget increases, the cumula-
tive Jaccard distance decreases which means that higher refresh budgets always
leads to a fresher replica and less errors.

5 Related Works

Replicas (a.k.a., local views) are used to increase availability and reactiveness,
however maintenance processes are needed to keep the freshness of data and re-
duce inconsistencies. To the best of our knowledge Acqua (presented in Section
2) is the only approach that directly targets RSP processing. However, consid-
erable studies exist about maintenance of local views in the database commu-
nity [2, 7, 9, 14].

S.Babu et al. [2] proposed an adaptive approach to handle changes of update
streams, such as stream rates, data characteristics, and memory availability over
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time. The approach manages the trade-off between space and query response
time. They proposed Adaptive Caching algorithm that estimates cache benefit
and cost online in order to select and allocate memory to caches dynamically.

In the context of the Web, view materialization is an appealing solution,
since it decouples the serving of access requests from the handling of updates.
A.Labrinidis et al. [9] introduced the Online View Selection Problem as how
dynamically select materialization views to maximize performance while keeping
data freshness at an adequate level. They proposed an adaptive algorithm for
Online View Selection Problem that decides to materialize or just cache views.
Their approach is based on user-specified data freshness requirements.

J.Umbrich et al. [13] addressed the response time and freshness trade-off in
the Semantic Web domain. Cached Linked Data suffers from missing data as it
covers partial of the resources on the Web, on the other hand, live querying has
slow query response time. They proposed a hybrid query approach that improves
upon both paradigms by considering a broader rang of resources than cashes,
and offering faster result than live querying.

6 Conclusion and Future Works

In this work, we studied the problem of the continuous evaluation of a class of
queries that joins data streams and background data. Reactiveness is the most
important performance indicator for this class of queries. When the background
data is distributed over the Web and slowly evolves over time (i.e., it is quasi-
static), correct answers may not be reactive, because the time to access the
background data may exceed the time between two consequent evaluations.

To address this problem, we brought from the State-of-the-Art of RSP (specif-
ically, from Acqua [5] presented in Section 2) the idea to use i) a replica to store
the quasi-static background data at query registration time, ii) a maintenance
policy to keep the data in the replica fresh and iii) a refresh budget to limit the
number of the access to the distributed background data. In this way, accurate
answers can be provided while meeting operational deadlines.

In this paper, we contribute to the development of Acqua extending the
class of continuous queries for which Acqua policies can refresh the replica. In
particular, we investigate queries where i) the algebraic expression is a FILTER
of a JOIN of a WINDOW and a SERVICE and ii) the filter condition selects
mappings from the SERVICE clause checking if the values of a variable are larger
(or smaller) than a Filtering Threshold.

To study this class of queries, we formulate two hypotheses that capture the
same intuition: the closer was the value to the Filtering Threshold in the last
evaluation, the more probable is that it will cross the Filtering Threshold in
the current evaluation and, thus, it is important to refresh the mapping. In Hy-
pothesis H.1, we directly test this intuition defining the new Filtering Update
Policy, whereas, in Hypothesis H.2, we test this intuition together with the Ac-
qua policies defining WSJ-RND.F, WSJ-LRU.F and WSJ-WBM.F respectively
extending WSJ-RND, WSJ-LRU and WSJ-WBM.



17

The result of experiments about H.1 shows that our Filter Update Policy
keeps the replica fresher than Acqua policies when the number of mappings
subject to the filtering condition is below 40% of the total. Above this percentage
Aqua results are confirmed: WSJ-WBM is the best choice. The results of the
experiments about H.2 shows that the Filter Update Policy can be combined
with Acqua policies in order to keep the replica even fresher than with the Filter
Update Policy.

In our future work, we intend to broaden the class of queries that are subject
of our study. Our next step is to add multiple FILTER clauses to the SERVICE.
Then, we would like to explore queries where the filtering condition is not as crisp
as in this work, but it is formulated as a ranking clause [8] that involves variables
present both in the WINDOW and in the SERVICE clauses. In particular, we
intend to bring to the RSP domain results already known for SPARQL [11].

Moreover, we intend to further optimize the approach in two ways. On the
one hand, we want to explore the static optimization of pushing the FILTER
clause(s) into the SERVICE clause. This goes much beyond State-of-the-Art in
RSP, because the replica becomes a cache of recent results. On the other hand,
we want to explore how to dynamically determine the conditions for switching
among policies, e.g., by using the percentage of mappings subject to the filtering
condition.

Last but not least, we intend to study the effect of different trends in the
data. In the current experiment, we used Twitter data in which i) the number
of mentions in the tweets is correlated to the growth/shrink of the number of
followers and ii) the number of followers does not change drastically. We intend
to investigate the effect of the trends in the data using data from other domains
(e.g., sensor networks).
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