
Applying Semantic Interoperabiltiy Principles to
Data Stream Management

Daniele Dell’Aglio, Marco Balduini, Emanuele Della Valle

1 Introduction

The cost vs. opportunity trade-off in ICT projects often pushes separate organisa-
tions and, even, departments of the some organisation to collect and manage data
independently. This creates the so called data silos. However, early success of those
ICT projects commonly results in requests for cross-silos usages of data and, there-
fore, for addressing the data integration problem [29]. Systems addressing this prob-
lem have to bridge the silos and produce a uniform query interface.

Data streams do not make an exception. Consider, for instance, the case of a large
cultural heritage site where two successful ICT projects deployed Near Field Com-
munication (NFC) sensors [32] to let the guide signal where they are and a Quick
Response (QR) code1 based system that tourists can use to get information about a
part of the exposition. Add to this scenario the common habit of tourist to share on
social network their impressions about the visiting experience. Those three stream-
ing data sources are data silos. They serve the purpose of the application they were
built for. However, it is easy to image the value of cross-silos usage of those data
streams. For instance, it would be possible to recommend to a free guide to propose
an attractive short guided tour to the tourist nearby based on the preferences they
expressed by using the QR codes and sharing bits of their visits on social networks.

The problem of data integration has been studied for decades, but the experimen-
tal nature of the data acquisition solutions, which produce data streams, together
with the poor attention to this type of data, which is often to consider too low level
to be useful before aggregation, exacerbate the problem and requires a new genera-
tion of data integration solution tailored to data streams.
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Fig. 1 The Architecture of Data Integration Systems.

Most data integration systems adopt the architecture outlined in Figure 1. Data in
the silos can be organised in relational, XML or graph databases and in some case
even in textual and multimedia repositories. In two separate silos the same informa-
tion can appear with different syntaxes, data structures and conceptual models, rais-
ing respectively the syntactic, structural and semantic heterogeneity problem. For
example, the notion of user is likely to be different for the QR code based system
and a social network. The different business and legal requirements will influence
their respective data representation. For example, a social network is unlikely to
keep a record of what pieces in the site its users asked information about, while the
QR code based system is unlikely to keep track of what impressions its users shared
with their friends.

To integrate heterogeneous data across silos, an integrated conceptual model
(ICM) of the data needs to be made available that bridges the syntactic, structural
and semantic variations. In our example, a ICM of the user would consider all infor-
mation about users available in the various silos. The problem of representing and
querying incomplete information is extremely relevant in this context. For example,
the information, about which pieces in the site a users asked to be described, would
be explicitly available for the user of the QR code base application, whereas for
user of social network, given a check in to the site, it would be only possible to infer
that the user has seen some piece of the site without knowing exactly which one. In
order to model the ICM, an adequate data modelling language is needed. In litera-
ture, a variety of languages were proposed. They differ for their ability to capture
relationship between terms used to describe the data in the silos. In the last decade,
ontological languages like OWL [30] and OWL 2 [31] were often adopted for this
purpose. They can adequately master the semantic heterogeneity between the silos.

The ICM defines a vocabulary to issue (or register in the streaming setting)
queries across the silos, but in order to get results we have to link the terms describ-
ing the data in the silos to those in the ICM. Expressions to model those links are
named mappings and they can assume multiple forms (i.e, Local-as-View, Global-
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as-View and both [29]). Mappings only masters structural heterogeneity assuming
the silos and the ICM to be requested in the same data model. This is often not
the case, so a wrapping solution is needed to bridge the syntactic heterogeneity
between the data in the silos (e.g., relational) and the one data model assumed by
the mapping language. In some cases, hybrid solutions that wrap data in silos and
map it to the ICM exists, e.g. to map a given data model (e.g., relational) into the
data model of the ICM. In recent years, we observed a growing adoption of the
Resource Description Format (RDF) [26] as data model of the ICM because it is
adequate to represent data when the ICM is modelled in OWL or OWL 2. When
those technologies are adopted and the data in the silos is relational, R2RML [19] is
the associate mapping language to be used and SPARQL [35] (or its extensions to
data streams [9]) is the language to declare queries with. Dialects of R2RML exist
to map between data models that resemble the relational one, e.g., when data are
stored in CSV files or are XML or JSON results of Web Service invocations. The
Any23 solution2 is a good example of flexible open source framework to wrap any
type of data source as RDF.

The semantics of the data integration solution as a whole – i.e., to define which
are the correct answers to a query on top of a given set of data in the silos – is
determined by the semantics of the languages used to model the ICM, the mappings,
the wrappers, the one of the data model to represent data in the ICM and the one of
the query language used to declared the queries. Given the complexity of the task
of defining the semantics for a given data integration solution as a whole, readers
should not be surprised that current literature lacks a uniform and well-accepted
theory that describes the various parts of data integration systems. Only a consistent
theory for a particular data integration solution may be found.

This chapter considers only two extreme solutions: data-driven and query-driven.
In data-driven solutions the ICM is populated with data before starting to answer
a query declared on it. Solutions of this kind range from Materialised Views in
databases [24] up to consequence-based reasoning [25, 39]. The limit of data-driven
solutions is the need to duplicate in the ICM all the data in the silos even if only a
limited fraction is required to answer a query. On the contrary, in the query-driven
solutions a query expressed on the ICM is translated into a set of queries expressed
in the query language (if any) of the silos [16, 23]. The queries are then evaluated
in the silos, and the results are integrated into an answer to the original query. Un-
fortunately the query-driven approach is not always possible and depends on the
ontological language used to model the ICM. In recent years, both approaches were
explored to integrate data streams (see, for instance, [8] for a data-driven approach
and [14] for a query-driven one). They are commonly referred as embodiments of
the Stream Reasoning vision [20] and consensus is growing3 around the idea to
name them RDF Stream Processing (RSP) systems. It is worth to note that porting
solutions known to work in the static setting to the streaming one is far from being
trivial. Data-driven solutions are at risk of being impractical due to the very un-

2 http://any23.apache.org/
3 http://www.w3.org/community/rsp/
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bound nature of data streams while query-driven ones require more investigation to
master the operation semantics heterogeneity that exists in data stream management
systems [12].

The remainder of the chapter is organised as follows. Section 2 formalises the
notion of RDF stream and the semantics of continuous query processing of RDF
streams. Section 3 briefly surveys existing implementations. Section 4 assembles
all elements introduced in the previous sections and puts them at work on a case
study. Finally Section 5 concludes and casts some light on future developments of
the field.

2 RSP models

The main feature of RDF Stream Processing is its data model: instead of traditional
relational data, it uses the RDF data model. The rest of the section first introduces
the RDF data model, then presents the different data and query models proposed in
the literature.

2.1 The RDF data model

RDF is a W3C recommendation for data interchange on the Web [26]. RDF data are
structured as directed labeled graphs, where the nodes are resources, and the edges
represent relations among them. Each node of the graph is an RDF term: it can be
a named resource (identified by an IRI), an anonymous resource (also known as
blank node) or a literal (a number, a string, a date, etc.). Let us denote with I, B,
and L the set of resources, blank nodes and litereals. The basic building block of
RDF is the RDF statement, a triple (s, p,o) ∈ (I ∪B)× (I)× (I ∪B∪L). A set of
RDF statements is an RDF graph. Let us consider the following chunck of RDF
data, extracted by DBPedia4:

1 @prefix dbpedia: <http://dbpedia.org/resource/>
2 @prefix dbpprop: <http://dbpedia.org/property/>
3
4 dbpedia:Mona_Lisa dbpprop:title "Mona Lisa"@en .
5 dbpedia:Mona_Lisa dbpprop:title "La Gioconda"@it .
6 dbpedia:Mona_Lisa dbpprop:artist dbpedia:Leonardo_da_Vinci .
7 dbpedia:Mona_Lisa dbpprop:museum dbpedia:The_Louvre .
8 dbpedia:The_Louvre dbpprop:lat "48.860339"ˆˆxsd:double ;
9 dbpprop:lng "2.337599"ˆˆxsd:double ;

10 dbpprop:director dbpedia:Jean-Luc_Martinez .

4 Cf. http://dbpedia.org.
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This syntactic serialisation of RDF is named Turtle5. The first two lines are
the prefixes: they can be declared to use a clearer representation of the data,
e.g. given the prefix in line 1, dbpedia:Mona Lisa is a short version of the
IRI http://dbpedia.org/resource/Mona Lisa. The the second block
(Lines 4-10) contains the RDF statements: each of them is composed of three com-
ponents, respectively the subject, the predicate and the object. The statements in the
example describe the Mona Lisa: named Mona Lisa in English (Line 4), and La Gio-
conda in Italian (Line 5), it is a work of Leonardo Da Vinci (Line 6) and it is located
at the Louvre (Line 7), a museum located at the coordinates 〈48.860339,2.337599〉
(Lines 8 and 9) directed by Jean-Luc Martinez (line 10). Notably, Lines 4-7 clearly
shows the triples separated by the character ”.”, whereas Lines 8-10 shows a conve-
nience syntax that allows to separate with the character ”;” pairs of property object
sharing the same subject.

The following sections illustrate how the RDF data model has been used in the
definition of data models for RSP, and how it can be processed by the engines. These
analyses are used in Section 3 to present and classify the existing RSP solutions.

2.2 The RSP data model

In the previous chapters, the notion of data stream was introduced. We learnt that
Data Stream Management System (DSMS) (Chapter [38]) and Complex Event Pro-
cessing (CEP) (Chapter [18]) systems work on relational data streams. This section,
to cope with the data integration problem, presents the RDF data streams (or RDF
streams), introducing the existing definitions proposed in the previous years. The
definition of RDF stream is built from the one of relational data stream. RDF streams
are sequences of timestamped data items, where a data item is a self-consumable in-
formative unit; moreover, the main characteristics of relational data streams hold
[5]:

• They are continuous: new data items are continuously added to the stream;
• They are potentially unbounded: a data stream could be infinite;
• They are transient: it is not always possible to store data streams in secondary

memory;
• They are ordered: data items are intrinsically characterised by recency. The or-

der is partial, i.e. two data items can share the same temporal annotation (con-
temporaneity)

Different definitions of RDF streams have been proposed by RSP research. It is
useful to introduce to axes to classify them: the data item (Section 2.2.1) and the
time annotation (Section 2.2.2).

5 Cf. http://www.w3.org/TR/turtle/.
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2.2.1 Data item dimension

The data item is the minimal informative unit. Existing works in RSP consider two
alternatives for this role: RDF statements – triples of RDF resources, and RDF
graphs – set of RDF statements.

The simplest case is the one where the stream is composed of RDF statements:
each data item is composed of a sequence of three RDF resources: subject, predicate
and object. For example, let us consider this RDF stream on which each triple states
the presence of a person in a room of The Louvre:

:alice :detectedAt :monaLisaRoom [1] .
:bob :detectedAt :parthenonRoom [2] .
:conan :detectedAt :monaLisaRoom [5] .
:bob :detectedAt :monaLisaRoom [5] .

Turtle-like syntax is adopted: in each row there is an RDF statement enriched with
the time annotation (the fourth element between square brackets). When adopting
this data model, each statement may contain enough information to be processed as
informative unit.

Even if the RDF statement stream model is easy to be managed, the amount of
information that a single RDF statement carries may be not enough when modelling
real use cases. For this reason, recent works (e.g., [7]) propose to use as informative
unit RDF graphs, i.e. set of RDF statements. Let us consider the following RDF
stream, expressing check-in operations in a social network:

:g1 [1]
{

:alice :posts :c1 .
:c1 :where :monaLisaRoom .
:c1 :with :conan .

}

:g2 [3]
{

:bob :posts :c2 .
:c2 :where :parthenonRoom .
:c2 :with :diana .

}

:g3 [3]
{

:conan :posts :c3 .
:c3 :where :monaLisaRoom .

}

This example adopts a Trig-like syntax6: RDF resources :g1, :g2 and :g3 identify
three RDF graphs followed by the relative time annotation (the number between
squared brackets). The blocks of RDF statements (enclosed in {}) are the contents

6 Cf. http://www.w3.org/TR/trig/.
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of the graphs. As it is possible to observe, in this example single RDF statements
are not enough to represent a whole informative unit (e.g., a check-in post).

2.2.2 Time annotation dimension

The time annotation is a set of time instants associated with each data item. The
choice to consider the time as an annotation on data items, and not as part of the
schema, is inherited by the DSMS research [5], and it is motivated by both modelling
and technical reasons: the time information could be part of the schema, but it should
not be mandatory (i.e. there are scenarios on which it is not). Moreover, DSMSs and
CEPs usually do not allow explicit accesses to the time annotations through the
query languages: conditions are usually expressed with time relative constraints,
e.g. select events that happen before a given one, or identify the events that hold in
the last five minutes.

The term application time refers to the time annotation of a data item [12].
Usually, application time is represented through sets of timestamps, i.e. identifier of
relevant time instants. The classification along the time annotation axis depends on
the number of timestamps that compose the application time.

In the simplest case, the application time consists of zero timestamps: in other
words, there is not explicit time information associated with the data items. It fol-
lows that the RDF stream is an ordered sequence of elements that arrive to the
processing engine over time, like in the stream S represented in the Figure 2.

Fig. 2 Example of stream with zero timestamps per data item.

Rounds labelled with ei (i in [1,4]) represents the data items of the stream; the
time flows from left to right, e.g. item e1 happens before item e2. Even if the data
items do not have explicit timestamps, it is possible to process those streams by
defining queries that exploit the order of the elements, such as:

q1. Does Alice meet Bob before Conan?
q2. Who does Conan meet first?

Let us consider now the case on which the application time is modelled introduc-
ing a metric [37] and each data item has one timestamp like in Figure 3.

In most of the existing works, the timestamp used in the application time rep-
resents the time instant at which the associated event occurs, but other semantics
are possible, e.g. time since the event holds. Due to the fact that data items are still
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Fig. 3 Example of stream with one timestamp per data item.

ordered by recency (as in the previous case), it is possible to issue queries of the
previous case, as q1 and q2. Additionally, it is possible to write queries that take into
account the time, such as:

q3. Does Diana meet Bob and then Conan within 5m?
q4. How many people has Alice met in the last 5m?

It is worth to note that q3 and q4 do not refer to absolute time instants, but on relative
ones w.r.t the time instant of another event (as in q3) or the current time instant (as
in q4).

As a final case, let us introduce the application time composed of two times-
tamps. The semantics that is usually associated to the two timestamps is the time
range ( f rom, to] on which the data item is valid, as shown in Figure 4.

Fig. 4 Example of stream with two timestamps per data item.

Each square represents a data item, and the application time is represented by the
initial and the final timestamps, e.g. e1 has application time (1,5), so it is valid from
the time instants 1 to the time instants 5. Similarly to the previous case, it is still
possible to process to the queries presented in the first two cases (e.g., q1, . . . , q4),
and additionally more complex constraints can now be written, such as:

q5. Which are the meetings that last less than 5m?
q6. Which are the meetings with conflicts?

Other cases exist, where the application time is composed of three or more times-
tamps, or where the application time semantics has other meanings. Even if they can
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be useful in some use cases, they are still under investigation in RSP research and
no relevant results have been reached, yet.

2.3 RSP query model

After the presentation of the RDF stream definitions, this section discusses the prob-
lem of processing those kind of data. As for the data model, the RSP query model is
inspired by research in DSMS and CEP: existing work adapts the existing operators
of those disciplines to process RDF data streams.

2.3.1 The CQL Model and its RDF stream adaptation

In Chapter 4 [38], we learnt that the CQL stream processing model (proposed by
the DB group of the Stanford University [4]) defines a generic DSMS through three
classes of operators (Figure 5.a).

The first class of operators manages the data stream: due to the fact that a stream
is a potentially infinite bag of timestamped data items, this operators extract finite
bags of data. CQL defines as stream-to-relation the operators able to transform
streams in relations; among the available operators of this class, one of the most
studied operators of this class is the sliding window. Next, the relation may be
transformed in another relation through a relation-to-relation operator. Relational
algebraic expressions are a well-known case of this class of operators. Finally, the
transformed relation has to be set as output. There are usually two ways to set the
answer: as a time-varying relation, or as a part of a stream. In the second case, an
additional operator is required: the relation-to-stream.

Fig. 5 The CQL model and its adaptation for RDF Stream Processing
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As already mentioned in Chapter 4 [38], the CQL model inspired the design of
different RDF Stream Processing engines [9, 27, 14], and currently there are dif-
ferent implementations (e.g. C-SPARQL, SPARQLstream, CQELS) of the adapted
model, represented in Figure 5.b.

The stream and the relation concepts are mapped to RDF streams and to set
of mappings (using the SPARQL algebra terminology7), respectively. To highlight
the similarity of the RSP operators to the CQL ones, similar names are used: S2R,
R2R and R2S to indicate the operators respectively analogous to stream-to-relation,
relation-to-relation and relation-to-stream operators. The following sections de-
scribe the sliding window as example of S2R operators, SPARQL algebra as ex-
ample of R2R operators, and the streaming operator as instance of R2S operators.

2.3.2 The sliding windows

Given a stream S, a sliding window dynamically selects subsets of the data items
of S. The intuition behind these operators is that the most recent data are the most
relevant, so it selects them from the stream and queries it, repeating this operations
as the time goes ahead.

The basic element of the sliding windows are the windows. Given a stream S,
a time-based window W defined through two parameters o and c selects the data
item d of S with associated timestamp in (o,c]. Given the stream in Figure 6, the
window defined between the time instants 2 (included) and 5 (excluded) selects the
elements e3, e4 and e5.

Fig. 6 Time-based sliding window

7 Cf. http://www.w3.org/TR/sparql11-query/.
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A sliding window generates multiple windows (at different time instants) to cre-
ate a time-varying view over the stream. Two of the most famous kinds of sliding
windows are the time-based sliding windows and the triple-based sliding win-
dows. A time-based sliding window generates a sequence of windows at regular
time intervals (e.g. a window each 2 seconds). Then, it selects the contents of the
streams accordingly to each window (o,c] (where o and c are the opening and the
closing time instants). The time range changes periodically, modifying the content
of the sliding window. A time-based sliding window is described through two pa-
rameters, the width ω (the dimension of the window, c− o) and the slide β (the
distance between two consecutive windows).

Fig. 7 Time-based tumbling window

Let us consider the example in Figure 6: it shows a time-based window W with
width ω = 3 and slide β = 3. The first window selects all the items with timestamp
in (1,4], the second one selects the items with timestamps in (3,6], the third one
selects the items with timestamps in (5,8]. As said above, the width of the window
represented in the picture is 3 (4-1=6-3=8-5), while the slide parameter, defined
as the distance between two consecutive windows, is 2 (3-1=5-3). When the slide
parameter is equal to the width parameter, the sliding-window is also known as
tumbling window, as depicted in Figure 7. This kind of sliding window is important
because it partitions the stream: each data item would only in one window.

Tuple-based sliding windows select a fixed number of data items (Figure 8). Sim-
ilarly to time-based sliding windows, they are described by the width and the slide
parameters, but the width indicates the number of RDF statements that are collected
in the current view, while the slide indicates how many RDF statements are re-
moved/added at each window slide. Consequently, the difference between the clos-
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ing time instant and the opening time instant of the generated windows is not con-
stant: as it is possible to observe in the picture, windows can have different lengths.

Fig. 8 Tuple-based tumbling window

2.3.3 The R2R operator

SPARQL is the query language of RDF [35]: it allows to query RDF models and
to perform transformation of relations. In the following, the main concepts of the
SPARQL algebra [33] is briefly introduced, focusing on the WHERE clause, the
clause that contains the criteria of selection of the data (similarly to the WHERE
clause of SQL). In SPARQL, the WHERE clause contains a set of graph pattern ex-
pressions that can be constructed using the operators OPTIONAL, UNION, FILTER
and concatenated via a point symbol “ .” that means AND. Let us extends the sets
of symbols introduced for RDF (i.e., the pairwise disjoint sets I (IRIs), B (Blank
nodes), and L (literals)) with the set V (variables). A graph pattern expression is
defined recursively as:

1. A tuple from (I ∪B∪V )× (I ∪V )× (I ∪B∪ L∪V ) is a graph pattern and in
particular it is a triple pattern.

2. If P1 and P2 are graph patterns, then (P1 . P2), (P1 OPTIONAL P2) and
(P1 UNION P2) are graph patterns.

3. If P is a graph pattern and R is a SPARQL built-in condition, then
(P FILTER R) is a graph pattern.
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A SPARQL built-in condition is composed of elements of the set I ∪L∪V and
constants, logical connectives (¬, ∧, ∨), ordering symbols (<,≤,≥,>), the equality
symbol (=), unary predicates like bound, isBlank, isIRI and other features. An
important case of graph pattern expression is the Basic Graph Pattern (BGP): it is
defined as a set of triple patterns and FILTER clauses that are connected by the “.”
(i.e., the AND) operator.

The semantics of SPARQL queries uses as basic building block the solution
mapping: let P be a graph pattern, var(P) denotes the set of variables occurring in
P. A solution mapping µ is a partial function µ : V → (I ∪L∪B). The domain of
µ , denoted by dom(µ), is the subset of V where µ is defined.

The relation between solution mappings, triple patterns and basic graph patterns
is given in the following definition: given a triple pattern t and a solution mapping
µ such that var(t) ⊆ dom(µ), µ(t) is the triple obtained by replacing the variables
in t according to µ . Given a basic graph pattern B and a solution mapping µ such
that var(B)⊆ dom(µ), we have that µ(B) = ∪t∈Bµ(t), i.e. µ(B) is the set of triples
obtained by replacing the variables in the triples of B according to µ .

Using these definitions, [33] defines the semantics of SPARQL queries as an
algebra. The main algebra operators are Join (1), Union (∪), Difference(\) and Left
Join (d|><|). The authors define the semantics of these operators on sets of solution
mappings denoted with Ω . The evaluation of a SPARQL query is based on its
translation into an algebraic tree composed of those algebraic operators.

The simplest case is the evaluation of a basic graph pattern: let G be an RDF
graph over I∪L and P a Basic Graph Pattern. The evaluation of P over G, denoted
by [[P]]G, is defined by the set of solution mappings:

[[P]]G = {µ| dom(µ) = var(P) and µ(P)⊆ G}

If µ ∈[[P]]G, µ is said to be a solution for P in G.
The evaluation of more complex graph pattern is compositional and can be de-

fined recursively from basic graph pattern evaluation .

2.3.4 The streaming operators

When the R2R operator transforms a set of mapping, the system can produce the
output with the computation result. If the outputs of the query processor should be a
stream, it is necessary to include a R2S operator. When applied, it appends the set of
mappings to the output stream. At each time instant at which the continuous query
is evaluated, the set of solution mappings is processed by the R2S operator, which
is in charge determine which data items have to be streamed out. There are usually
three R2S operators, depicted in Figure 9.

Rstream streams out the computed timestamped set of mappings at each step.
Rstream answers can be verbose as the same solution mapping can be computed
at different evaluation times, and consequently streamed out. It is suitable when it
is important to have the whole SPARQL query answer at each step, e.g., discover
museum attractions that are popular in a social network in the recent time period.
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Fig. 9 Streaming operators

Istream streams out the difference between the timestamped set of mappings
computed at the last step and the one computed at the previous step. Answers are
usually short (they contain only the differences) and consequently this operator is
used when data exchange is expensive. Istream is useful when the focus in on the
new mappings that are computed by the system, e.g., discover emerging museum
attractions in a social network.

Dstream does the opposite of Istream: it streams out the difference between the
computed timestamped set of mappings at the previous step and at the last step.
Dstream is normally considered less relevant than Rstream and Istream, but it can
be useful, e.g., to retrieve attractions that are no more popular.

2.3.5 Temporal operators

So far only typical operators of DSMS were introduced. They allows to match graph
patterns in the streaming data. However, practical scenarios (including the one illus-
trated in Section 4) may require to check if two graph patterns are observed at the
same time, one after each other or when typical temporal relations between intervals
holds.

Fig. 10 Example of stream with two timestamps per data item.
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For instance, given the situation illustrated in Figure 10, one may be willing to
detect the people who are now with people who were observed together. At time
6, the answer is Conan and Diana, because they are with Alice and Bob who were
observed together between 1 and 5.

Figure 11 informally introduces the temporal relations between two temporal
intervals as defined in Allen’s Algebra [2, 37]. Assume that compatible solution
mappings exists for three graph pattern P1, P2, and P3 in the time intervals shown
in 11, the horizontal bars represent the result of evaluating the operators on the
solution mappings at the different time units depicted with vertical dashed lines.

Fig. 11 Temporal relations between two temporal intervals as defined in Allen’s Algebra.

A subset of those temporal operators can be added to RSP query model as special
types of joins that add to the boolean semantics of the join operator, the temporal
semantics of the specific temporal relation of the operator. For instance, the solution
mappings of P1 SEQ P2 from a membership perspective are those of (P1 JOIN P2),
but the SEQ operator keeps only the solution mappings of the JOIN operator for
which a solution mapping of P2 starts after the end of a solution mapping of P1.

3 RSP implementations

The previous section explains the data models and the query models used by RDF
stream processing systems: putting together techniques and concepts from DSMS,
CEP, and Semantic Web researches, RSP engines are systems able to cope with the
semantic heterogeneity of the data. The following sections present an overview of
existing systems.
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Table 1 Data models adopted by RSP systems
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Table 1 lists the systems and classify them according to the RSP data and
query models presented above. Analysing the table, it is possible to observe that
most systems focus on RDF streams with RDF statement as data item and the
application time is composed of one timestamp. C-SPARQL [9], CQELS [27],
SPARQLstream [14] manage data streams where data items are RDF statements.
Their query models are similar, but they are designed in different ways and they
target different use cases. Sections 3.1, 3.2 and 3.3 discuss them.

The data model with one timestamped RDF statements is the one on which
the initial RSP research focused, and novel trends started to consider data model
variants. The SLD platform, described in Section 3.6, has features similar to C-
SPARQL, CQELS and SPARQLstream, but it is able to process RDF streams with
RDF graphs as data items. INSTANS (Section 3.4) follows a completely different
approach: it takes sequences of RDF statements without timestamps as input and
processes them through the RETE algorithm. Finally, ETALIS and EP-SPARQL,
presented in Section 3.5, work on RDF streams with application time composed of
two timestamps: they use CEP concepts and are able to perform Stream Reasoning
tasks.

3.1 C-SPARQL

Continuous SPARQL (C-SPARQL) [9] is a language for continuous queries over
streams of RDF data that extends SPARQL 1.1. Is it implemented in the C-SPARQL
engine, and it allows to register queries that are continuously evaluated over time.
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Fig. 12 Architecture of the C-SPARQL engine

Figure 12 presents a high-level de-
scription of the C-SPARQL Engine ar-
chitecture. The engine is capable of
registering queries and running them
continuously, accordingly to the con-
figuration of the engine. To this end,
the C-SPARQL Engine uses two sub-
components, a Data Stream Manage-
ment System and a SPARQL engine.
The former is responsible of executing
continuous queries over RDF Streams,
producing a sequence of RDF graphs
over time, while the latter runs a stan-
dard SPARQL query against each RDF
graph in the sequence, producing a continuous result. This result is finally format-
ted as specified in the query: if the SELECT or ASK forms are used, then the result
is a relational data stream; if the CONSTRUCT form is used, the result is an RDF
Stream. Both the SPARQL engine and the DSMS are plug-ins of the C-SPARQL
engine, and they can be changed. The binaries of the engines use Esper8 as DSMS
and Apache Jena-ARQ9 as query engine.

3.2 CQELS

The Continuous Query Evaluation over Linked Streams (CQELS) accepts queries
in CQELS-QL [27] – a declarative query language built from SPARQL 1.1 gram-
mar. As C-SPARQL, it extends SPARQL with operators to query streams. The main
difference between C-SPARQL and CQELS-QL is in the R2S operator supported:
CQELS-QL supports only Istream, whereas C-SPARQL supports only Rstream.

Fig. 13 Architecture of CQELS

Differently from the C-SPARQL
Engine that uses a “black box” ap-
proach which delegates the process-
ing to other engines, CQELS proposes
a “white box” approach (see Figure
13) and implements the required query
operators natively to avoid the over-
head and limitations of closed system
regimes. CQELS provides a flexible
query execution framework with the
query processor dynamically adapting
to the changes in the input data. During query execution, it continuously reorders

8 Cf. http://esper.codehaus.org/.
9 Cf. http://jena.apache.org/documentation/query/.
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operators according to heuristics that improve query execution in terms of delay and
complexity. Moreover, external disk access on large Linked Data collections is re-
duced with the use of data encoding and caching of intermediate query results. It
returns both data streams and RDF streams depending on the query form used.

3.3 SPARQLstream

SPARQLstream [14] is another extension of SPARQL that supports operators over
RDF streams such as time windows. Unlike CQELS and the C-SPARQL Engine,
SPARQLstream supports all the streaming operators presented in Section 2.3.4. The
language is adopted in morph-streams: it is an RDF stream query processor that
uses Ontology-Based Data Access techniques [15] for the continuous execution of
SPARQLstream queries against virtual RDF streams that logically represent concrete
data streams.

Fig. 14 Architecture of Morph-streams

Morph-streams uses R2RML10 to
define mappings between ontologies
and data streams. SPARQLstream queries
are rewritten in streaming queries over
the data streams. The rewriting pro-
cess does not translate directly a
SPARQLstream query in a continuous
query in the target language of the un-
derlying DSMS (Figure 14). It repre-
sents, instead, the query as a relational
algebra expressions extended with time
window constructs. This allows per-
forming logical optimizations (includ-
ing pushing down projections, selec-
tions, and join and union distribution)
and translating the algebraic representation into a target language or REST API re-
quest.

The algebraic representation can be translated into both DSMS continuous
queries, e.g. for SNEE11 or Esper, and Sensor Middleware REST API invocation,
e.g. GSN12 or Cosm/Xively13.

10 Cf http://www.w3.org/TR/r2rml/.
11 Cf. http://code.google.com/p/snee/.
12 Cf. http://lsir.epfl.ch/research/current/gsn/.
13 Cf. https://xively.com/.
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3.4 INSTANS

Fig. 15 Architecture of INSTANS

INSTANS (Incremental eNgine for
STANding Sparql) [36] takes a differ-
ent perspective on RDF Stream Pro-
cessing. It asks the users to model their
continuous query problem as multiple
interconnected SPARQL 1.1 queries
and rules. It performs continuous eval-
uation of incoming RDF data against
the compiled set of queries, storing
intermediate results. It has no notion
of S2R operator; when all the condi-
tions of a query are matched, the re-
sult is instantly available. For this rea-
son it requires no extensions to RDF
or SPARQL. As shown in Figure 15,
to process the multiple interconnected
queries it compiles them into a Rete-like structure.

3.5 ETALIS and EP-SPARQL

Fig. 16 Architecture of ETALIS

ETALIS (Event TrAnsaction Logic In-
ference System) [3] is a CEP with
Stream Reasoning features. As input
data format it uses RDF statements
annotated with two timestamps (see
also Section 2.2). Users can spec-
ify event processing tasks in ETALIS
using two declarative rule-based lan-
guages called: ETALIS Language for
Events (ELE) and Event Processing
SPARQL (EP-SPARQL) [3]. Both lan-
guages have the same semantics: com-
plex events are derived from simpler
events by means of deductive prolog
rules (Figure 16).

ETALIS not only supports typical
event processing constructs (e.g., such
sequence, concurrent conjunction, disjunction, negation), but it also supports rea-
soning about events. For example, as CEPs, it allows to check for sequences such as
A→ B (an event of type A followed by an event of type B). However, it also allows
stating that C is a subclass of A. Therefore the condition A→ B will be matched also
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if an event of type C is followed by an event of type B, because all events of type C
are also events of type A.

Moreover, the two languages support all operators from Allen’s interval alge-
bra (e.g., during, meets, starts, finishes, as described in Section 2.3.5); count-based
sliding windows; event aggregation for COUNT, AVG, SUM, MIN, MAX; event fil-
tering, enrichment, projection, translation, and multiplication; processing of out-of-
order events (i.e. events that are delayed due to different circumstances e.g. network
anomalies etc.); and event retraction (revision). ETALIS is a pluggable system that
can use multiple prolog engines such as YAP14, SWI15, SICStus16, XSB17, tuPro-
log18 and LPA Prolog19.

3.6 SLD

SLD is not a proper RSP engine, but it wraps the C-SPARQL engine in order to
add support features, such as extensible means for real-time data collection, Linked
Data publishing, and data and query result visualising. As depicted in Figure 17,
the SLD framework offers: a set of adapters that transcode relational data streams
in streams of RDF graphs (e.g., a stream of micro-posts as an RDF stream using the
SIOC vocabulary [13], or a stream of weather sensor observation using the Seman-
tic Sensor Network vocabulary [17]), a publish/subscribe bus to internally transmit
RDF streams, facilities to record and replay RDF streams, an extendable component
to decorate RDF streams (e.g., adding sentiment annotations to micro-posts), and a
linked data server to publish results following the Streaming Linked Data Format
[11].

Fig. 17 Architecture of SLD

SLD is realised in order to easy the task of deploying the C-SPARQL engine
in real-world applications: it is at the basis of works of real time data analysis of
city scale events (i.e. group of events located in multiple venues around a city)

14 Cf. http://www.dcc.fc.up.pt/ Evsc/Yap/.
15 Cf. http://swi-prolog.org/.
16 Cf. http://www.sics.se/isl/sicstuswww/site/index.html.
17 Cf. http://xsb.sourceforge.net/.
18 Cf. http://www.alice.unibo.it/xwiki/bin/view/Tuprolo.
19 Cf. http://www.lpa.co.uk/win.html.
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Fig. 18 Data model of the Blitz Guided Thematic Tour case study

for London Olympic Games 2012, Milano Design Week 2013 and Milano Design
Week 2014 [7].

4 Case study

This section puts at work, in a realistic cultural heritage case study, the elements
introduced in the previous sections. It proposes Blitz Thematic Guided Tours as
an engaging cyber-physical-social service to experience a museum. This service
allows free guides for offering a short and focused guided tour that matches the
interests of the people nearby with the artworks exposed in the rooms at hand and
with their own expertise.

The section starts describing the requirements such a service has to implement.
Then, it presents an overview of an RSP based implementation. The emphasis is
posed on the data (both streaming and static) and on the continuous queries that
process it.

The services has to address the following requirements:

• R.1 It must be able to merge information from multiple heterogeneous data
streams.

• R.2 It must allow to detect where the visitors are in the museum with a mini-
mum delay.

• R.3 It should understand what the visitors are interested in.
• R.4 It should recommend free guides to organise a thematic tour.
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The data involved in the Blitz Guided Thematic Tour is collected in different
ways and from different data sources. It is worth to note that the visitors are not only
service consumers, but also data producers. The means to collect the data are:

• User Mobile App: the visitors, when entering the museum, are offered to
download the official app of the museum. This app offers information about
artworks using NFC technology and allows guides to invited visitors to join a
Blitz Guided Thematic Tour.

• Guide Mobile App: the guides also have a mobile app that let them specify
their status (e.g., if they are available to start a tour) and their position. This
application represents the communication channel between the guides and the
visitors involved in a Blitz Guided Thematic Tour.

• NFC Sensors: these sensors are placed aside every artwork. They identify the
artwork and allow visitors to learn more about the artwork. As a side effect,
they allow indoor positioning of the visitors.

• Social Networks: they are the only sources of the knowledge about the users.
The official User Mobile App simplifies visitors’ task of sharing online the art-
works they liked by asking visitors to connect their social network accounts.
For the users who do so, the service can learn the language(s) and the interests
of the users analysing past micro-posts (e.g., using the technique described in
[6]).

• Static Knowledge: information related to the artworks, the rooms they are
displayed in, how the rooms are connected, and the expertise of the guides.

Figure 18 presents the data model of the case study. Each User (i.e., a Visitor
or a Guide) are identified in the system via the UUID of their Smartphonewhere
the two official mobile applications are installed: the red part of the Figure presents
the data related to each Visitor, in particular the information the service can
obtain from the social network; the green part refers to the Guides’ information,
their positions and their statuses; finally the blue part models the static informa-
tion about each NFC sensor that is associatedWith an ArtWork which is
locatedIn a Room which isConnectTo one or more rooms.

Figure 19 offers an overview of the architecture of the Blitz Guided Thematic
Tour service with a focus on data streams, static data and the components that trans-
form the information into actionable knowledge (i.e., recommendations for free
guides). The visual language is the one proposed for the Streaming Linked Data
framework [7]. Each component represents a step in the data transformation pro-
cess, while the input and output data are depicted in a different way depending on
whether they are static or streaming. The remainder of the section details this picture
step by step referring to the numbering of the elements.

Let us start from the NFC sensor. Smart phones equipped with NFC represent
the cheapest way for indoor positioning. In the case study the visitors’ positions are
acquired as a result of the action of learning more about artworks exhibited in the
museum. The NFC reader produces a relational stream (see component S1 in Fig-
ure 19) presented in the Listing 1 containing the tuples <phoneID,sensorID,
timestamp>.
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Fig. 19 Overview of the architecture of the Blitz Guided Thematic Tour service

Listing 1 Stream S1 produced by NFC sensors and consumed by the query Q1

phone1, monnalisaSensor [τ1]
phone2, theKissSensor [τ2]

Query Q1 addresses requirements R.2. It continuously processes this relational
stream treating it as a virtual RDF stream by using OBDA approach briefly intro-
duced in Section 1. A mapping file, written in R2RML, defines mappings between
the ontology illustrated in Figure 18 and the relational data streams. It maps the re-
lational data in the streams to the objects in the ontology. It is worth to note that in
order to save space, the prefixes clauses are shown only the first time the prefix is
required and they are omitted in all the listings that appear after.

Listing 2 contains the R2RML file to map the detection of a smart phone by a
sensor. Line 9 declares how to produce the subject of the triple using the template
URL along with the phoneID parameters extracted from the stream S1 specified
at Line 8. The predicate of the triples, srs:detectedBy, are created at Line 10
along with the object, specified at Line 12 using the template URL for the NFC
sensors.

Listing 2 R2RML file to map the detection of a smartphone by a sensor

1 @prefix rr: <http://www.w3.org/ns/r2rml#> .
2 @prefix srs:<http://sr.org/ontologies/2014/7/srs#> .
3 @prefix : <http://sr.org/R2RMapping#> .
4 @prefix phone:<http://sr.org/data/smartphones/>
5 @prefic sensor:<http://sr.org/data/sensors/>
6
7 :smartphoneMap a rr:TriplesMap ;
8 rr:logicalTable [ rr:tableName "S1" ];
9 rr:subjectMap [ rr:template "phone:{smartphoneID}" ];

10 rr:predicateObjectMap [
11 rr:predicate srs:detectedBy;
12 rr:objectMap [ rr:template "sensor:{sensorID}" ] ] ].
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Listing 3 presents the query that processes the relational data stream S1 treating
it as a virtual RDF stream. It is worth to note that we are in a streaming setting, the
queries are registered and periodically run against the flowing data. The REGISTER
STREAM clause at Line 1 denotes the registration process for the query and tells the
system to produce a RDF stream as output. It must be coupled with the CONSTRUCT
clause, specified at Line 3, to tell the system the format of the output stream. The
FROM STREAM clause at Line 4 specifies the query input stream. The unbound
nature of a stream requires the ability to specify a criteria to select a part of flowing
data (e.g. a time based window sorting out the most recent triples). The RANGE
and STEP clauses identify the time window containing the data to analyze, at Line
3 we specified a 10 minutes width window with a slide of 1 minute. The FROM
clause identifies the online source of RDF static data. The WHERE clause at Line 5
opens the triples pattern specifications. The triple pattern at Line 5 matches all the
triple with srs:detectedBy predicate from the current window over the stream
to find the links between smart phones and sensors. Then the triple pattern at Line
6 and Line 7 are matched against the static knowledge base, to identify the user
associated with the smart phone (?userID) and the room in which a sensor is
located (?roomID).

Listing 3 Query Q1 that processes the stream S1 and produces stream S2

1 REGISTER QUERY Q1 AS
2 CONSTRUCT { ?userID srs:detectedAt ?roomID }
3 FROM STREAM <http://sr.org/streams/S1> [RANGE 10m STEP 1m]
4 FROM <http://sr.org/staticData/museum.rdf>
5 WHERE { ?phoneID srs:detectedBy ?sensorID ;
6 srs:associatedWith ?userID .
7 ?sensorID srs:locatedIn ?roomID . }

Let us assume that user:123 and user:345, respectively, owns phone1 and
phone2. The query Q1, observing in input the relational data stream in Listing 1,
produces as output on the RDF stream S2 the triples shown in Listing 4.

Listing 4 Stream S2 produced by the query Q1 and consumed by the query Q3

@prefix rooms:<http://sr.org/data/rooms/>
@prefix topics:<http://sr.org/data/topics/>
@prefix users:<http://www.sr.org/data/users/>

users:123 srs:detectedAt rooms:31 .
users:345 srs:detectedAt rooms:42 .

Let us now focus on the application installed on visitor’s smartphone. It rep-
resents the communication channel between the museum and the users. Once in-
stalled, the application, via a configuration wizard, asks the users to insert their so-
cial network accounts credentials (e.g., Twitter). Using twitter credentials a twitter
adapter (see component A1 in Figure 19) creates a new RDF stream (S3) wrapping
the twitter stream API. The information about the micro-posts of the users flows
on this RDF stream. The Listing 5 shows an example of micro-post in RDF that
flows on this stream. The vocabulary used to describe micro-posts is an extension of
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SIOC ontology [13]. It states that the micro-post @Louvre #monnalisa #wow
is posted by user:543, it contains the hashtags monnalisa and wow, and the
smartphone was located in a given geo-position.

Listing 5 Stream S3 produced by the adapter A1 and consumed by the decorator D1

@prefix geo:<http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix sioc:<http://rdfs.org/sioc/ns#> .
@prefix mp:<http://www.sr.org/data/mp/>
@prefix tags:<http://www.sr.org/data/tags/>

mp:1234 sioc:content "@Louvre #monnalisa #wow"ˆˆxsd:string ;
sioc:has_creator user:543 ;
sioc:topic tag:monnalisa, tag:wow ;
geo:location [ a geo:SpatialThing ;

geo:lat "48.860816"ˆˆxsd:double ;
geo:long "2.338320"ˆˆxsd:double ] .

The twitter decorator (D1) enriches the stream S3 by semantically annotating
the micro-post that flows on the stream with links that points to the artworks in the
Static Knowledge. For instance, it adds the following triple to the micro-post in
Listing 5.

mp:123456789 sioc:topic <http://sr.org/data/artworks/Monnalisa> .

Several techniques can be employed to discover those links. For instance, the
Streaming Linked Data framework [6] uses an aggregation of a spatial metric (that
checks the geo-position of the micro-post to make sure it was posted in the neigh-
bourhood of the museum) and four lexical similarity metrics that compare content
and hashtags of each tweet to the names of the artworks and the bags of words that
describe them.

The query Q2 addresses the requirement R.2 (i.e, detecting the position of the
users) using the stream of tweets to position the visitors. Notably, Q2 complements
the positions obtained with the readings of the NFC sensor (see Q1). It does so
by processing the stream S4 and positioning the users in the rooms based on the
artworks they have been talking about in the last 10 minutes. This continuous query
operates on a native RDF Stream, thus it does not need a mapping.

Listing 6 Query Q2 that processes the stream S4 and produces stream S5

1 REGISTER QUERY Q2 AS
2 PREFIX srs:<http://streamreasoning.org/ontologies/2014/7/srs#>
3 PREFIX sioc:<http://rdfs.org/sioc/ns#>
4 CONSTRUCT { ?userID srs:detectedAt ?roomID }
5 FROM STREAM <http://sr.org/streams/S4> [RANGE 10m STEP 1m]
6 FROM <http://sr.org/staticData/museum.rdf>
7 WHERE {
8 ?mp sioc:has_creator ?userID ;
9 sioc:topic ?artworksID .

10 ?artworksID srs:isIn ?roomID .
11 }
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Using the decorated micro-posts that flows on the stream S4, e.g., the one il-
lustrated in Listing 5, query Q2 links the user to the room where the artwork is
exhibited. On its output stream S5, it pushes triples such as:

users:543 srs:detectedAt rooms:31 .

It is worth to note that the output produced by Query Q1 and Q2 is made
of triples of the same type. This is typical of OBDA systems where complemen-
tary (and sometimes even overlapping) information is obtained from multiple data
sources.

Query Q3, presented in Listing 7, answers R.1 (i.e., merging information from
multiple heterogenous streams) and R.3 (i.e., understand what the visitors may be
interested in). For each room, it counts the number of visitors that may be interested
in a given topic. It outputs the top 5 most numerous groups (see ORDER BY and
LIMIT clauses at Lines 18 and 19) formed by at least 10 visitors (see HAVING
clause at Line 17). It does so consuming the RDF streams of visitors’ positions
produced by Q1 and Q2 (see the 2 different FROM STREAM clauses at Lines 4 and
5) and some static data describing the topology of the museum and the topics that
may interests the visitors. The former is used to collect the visitors and the artworks
in a given room or in the room nearby, the latter is computed using an off-line
analysis of the tweets of the visitors (e.g., using the approach described in [6]) and
it is used to match topics of interest to topics describing the artworks. Notably the
match requires to reason on the relations between the topics of the artworks and the
topics of interest of the visitors. The query does so by considering that the property
skos:transitiveBroader (see Line 14) is transitive and by traversing the
graph that links the two topics in order to find a matching.

Listing 7 Query Q3 that processes the streams S2 and S5 and produces stream S6

1 REGISTER QUERY Q3 AS
2 PREFIX srs:<http://streamreasoning.org/ontologies/2014/7/srs#>
3 CONSTRUCT { ?roomID srs:contains [ srs:userCount ?userTotalCount

; srs:topic ?topic] }
4 FROM STREAM <http://sr.org/streams/S2> [RANGE 10m STEP 1m]
5 FROM STREAM <http://sr.org/streams/S5> [RANGE 10m STEP 1m]
6 FROM <http://sr.org/staticData/museum.rdf>
7 WHERE {
8 SELECT ?roomID ?userTopic (COUNT(?userID) AS ?userTotalCount)
9 WHERE {

10 ?roomID srs:isConnectedTo ?roomID2 .
11 ?roomID2 srs:contains ?artworksID .
12 ?artworksID srs:topic ?artworkTopic .
13 ?userID srs:isInterestedIn ?userTopic .
14 ?artworkTopic skos:transitiveBroader ?userTopic.
15 }
16 GROUP BY ?roomID, ?topic
17 HAVING (?userTotalCount>10)
18 ORDER BY ?userTotalCount
19 LIMIT 5
20 }
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The query produces as output the stream S6. A snapshot of the RDF triples
flowing on S6 is presented in Listing 8.

Listing 8 Stream S6 produced by query Q3 and consumed by the query Q4

<http://www.sr.org/data/room/31>
a srs:Room ;
srs:contains [ srs:userCount "57"ˆˆxsd:integer ;

srs:topic topics:Renaissance_art ] .

In the case study, the guides’ positions and the status (i.e., being free or occupied
in a tour) are volunteered. Every time they enter a room of the museum they can use
a mobile app to let the system know their status. Stream S7, presented in Listing 9,
shows the information regarding the position and the status of every guide.

Listing 9 Stream S7 produced by the Guide Mobile App and consumed by the query Q4

guides:54 srs:detectedAt rooms:31 ;
srs:status statuses:free .

Finally, the last query of the chain (Q4), presented in Listing 10, answers to
requirement R.4, i.e., recommending the free guides to organise a guided tour. Q4
is the most complex query in the case study; not only it has multiple streams in input
(Lines 4 and 5) that have to be process together with static knowledge (Lines 6), but
it is also a event based query. The DURING clause, at line 9, allows to specify that
the pattern preceeding the DURING clause must be valid while the pattern following
the DURING clause is valid. In this specific case, it checks that while there is a large
enough group of people interested in a topic in a room, a guide able to talk about
such topic is present in the same room or in a room nearby.

Listing 10 Query Q4 that processes the streams S6 and S7 and produces stream S8

1 REGISTER QUERY Q4 AS
2 PREFIX srs:<http://streamreasoning.org/ontologies/2014/7/srs#>
3 CONSTRUCT { ?roomID srs:contains [ srs:userCount ?userTotalCount

; srs:topic ?topic] }
4 FROM STREAM <http://sr.org/streams/S6> [RANGE 10m STEP 1m]
5 FROM STREAM <http://sr.org/streams/S7> [RANGE 10m STEP 1m]
6 FROM <http://sr.org/staticData/museum.rdf>
7 WHERE {
8 { ?roomId srs:contains [ srs:userCount ?userTotalCount ; srs:

topic ?topic] . }
9 DURING

10 { ?guideID srs:status <http://sr.org/data/statuses/free> ;
11 srs:expertIn ?topic .
12 { ?guideID srs:detectedAt ?roomID . }
13 UNION
14 { ?guideID srs:detectedAt ?roomID2 . ?roomID2 srs:

connectedTo ?roomID . }
15 }
16 }
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Query Q4 pushes the recommendations for the guides on the stream S8. An
example of recommendation is presented in Listing 11. The recommendation will
appear on the mobile app of the guide who can decide to try to engage the visitors
with a blitz guided tour about Renaissance Art.

Listing 11 Stream S8 produced by the query Q4 containing the Blitz Guided Thematic Tour sug-
gestions for the Guides

guides:54 a srs:Guide ;
srs:suggestedTour [ srs:userCount "54"ˆˆxsd:integer ;
srs:topic topics:Renaissance_art ] .

5 Conclusions

The integration of heterogeneous data from different sources is gaining more and
more attention, and when the data is characterised by a high degree of dynamism, as
happens with stream data, new problems raise. This chapter discusses the semantic
interoperability of data streams through RDF streams and RDF Stream Processing
engines. It analyses the data models, the query models, and the existing implementa-
tions. It highlights the features of such implementations and their points of strength.
Finally, it presents an case study to show how to cope with data heterogeneity in a
realistic scenario.

Research in RSP is still open, and new trends are rising. Given the number of ex-
isting systems, a problem is their evaluation: there are several initiatives to compare
the operators they support [41], their performances [28], and the ability to produce
correct results [21]. The former highlights the differences in the query language
syntaxes and semantics, and it was the starting point to an initiative to define shared
standards in RSP, through a W3C Community Group20.

Reasoning on heterogenous, incomplete and noisy data streams is one of the
most active topics in RDF Stream Processing. It investigates methods and tech-
niques to define conceptual schemata for streaming data and to use them as driver
to access the data streams, to query them and to integrate the continuously flow
of answers. We saw that EP-SPARQL supports some Stream Reasoning features,
while SPARQLstream is a first attempt of ontology-based data stream access. They
are initial works and their support to Stream Reasoning techniques is still immature.
IMaRS [22] and DynamiTE [40] are more advanced reasoning techniques to process
RDF streams: they use ontologies to materialise the implicit data in data streams,
coping with the dynamic and incomplete nature of the streams. Some works on In-
ductive Stream Reasoning also address the noisy nature of data streams [10], but
more research is required.

20 Cf. http://www.w3.org/community/rsp/.
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dorache, Jérôme Euzenat, Manfred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus
Schreiber, Abraham Bernstein, and Eva Blomqvist, editors, International Semantic Web Con-
ference (1), volume 7649 of Lecture Notes in Computer Science, pages 641–657. Springer,
2012.


