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3.1 Introduction

The introduction of stream processing methods in the Semantic Web en-
ables the management of data streams on the Web. Chapter ?? introduced
models for RDF stream and several extensions of SPARQL engines with win-
dows for stream processing. The chapter assumes the absence of a TBox, so
it is possible to compute the query answer without considering the ontology
entailment defined through a TBox described in an ontological language. In
this chapter, we relax this constraint and we consider the case of query an-
swering over RDF streams when the TBox is not empty. In particular, we
focus on Stream Reasoning [9], the topic that studies how to compute and
incrementally maintain the ontological entailments in RDF streams.

In traditional Semantic Web reasoning data are usually static or quasi-
static1, so the whole computation of the ontological entailment can be exe-
cuted every time the data change. When we consider RDF streams the static

1The data change so slowly to be treated as static data

7
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hypothesis is not valid anymore: RDF stream engines work with highly dy-
namic data and they need to process them faster than new data arrives to
avoid congestion states. In this scenario, traditional materialization techniques
could fail; a possible solution is the incremental maintenance of the materi-
alized entailment using adaptations of the classical DRed algorithm [7, 14]:
when new triples are added, the deducible data is added to the materialization;
similarly, when triples are deleted the triples that cannot be deducted any-
more are removed from the entailment. The idea of incremental maintenance
was previously delivered in the context of deductive databases, where logic
programming were used for the incremental maintenance of such entailments.
The idea of incrementally maintain an ontological entailment was proposed
first by [15]: in this work the authors propose a version of DRed based on
logic program that computes the changes in the ontological entailment, and
consequently computes the new materialization adding and removing the two
delta sets.

In this chapter, we present IMaRS (Incremental Materialization for RDF
Streams) [5], a variation of DRed for the incremental maintenance of the win-
dow materializations. In general, the main problems of the incremental main-
tenance are the deletions: it is a complex task to determine which consequences
are not valid anymore when statements are removed by the knowledge base.
IMaRS exploits the nature of RDF streams in order to cope with this prob-
lem. As we show, the window operators allow to determine when a statement
will be deleted from the materialization. IMaRS, when triples are inserted in
the window, computes when they will be deleted and annotates them with
an expiration time stamp. This allows IMaRS to work out a new complete
and correct materialization whenever a new window of RDF streams arrives
by dropping explicit statements and entailments that are no longer valid. We
provide experimental evidence that our approach significantly reduces the time
required to maintain a materialization at each window change, and opens up
for several further optimizations.

In the rest of the chapter, we first introduce in Section 3.2 some basic con-
cepts. Then, we present a running example based on a social network stream
in Section 3.3. Section 3.4 presents IMaRS, with the description of the algo-
rithm. A list of related works is presented in Section 3.5; finally, we evaluate
IMaRS in Section 3.6 and close with some future direction in Section 3.7.

3.2 Basic concepts

In this section we introduce the idea behind the RDF streams and RDFS+,
the ontological language we consider in our work.



Incremental Reasoning on RDF streams 9

3.2.1 RDF stream

Even if the notion of RDF streams and RDF stream engines are widely
covered in Chapter ??, we briefly summarize the main concepts useful to
understand this chapter. A RDF stream [6] is an infinite sequence of times-
tamped RDF triples ordered by their timestamps. Each timestamped triple
is a pair constituted by an RDF triple and its timestamp ⌧ .

. . .

< subji+1, predi+1, obji+1 >: [⌧i+1]

< subji, predi, obji >: [⌧i]

. . .

A timestamp (or application time) ⌧ is a natural number and it rep-
resents the time associated to the RDF triple. They are monotonically non-
decreasing in the stream (⌧i  ⌧i+1); they are not strictly increasing to allow
for expressing contemporaneity, i.e., a stream can contain two or more RDF
triples with the same application time. Thus, timestamps are not required to
be unique.

The systems able to process and query RDF stream are called RDF
stream engines. The general idea to process an infinite sequence of elements
is to use several operators to extract portions of the stream and to work on
them. One of the most famous operator is the window [4]. A window contains
the most recent elements of the stream and its contents are updated over time
(the window slides over the stream).

3.2.2 RDFS+

RDFS+ [1] is an extension of RDFS (Section ??) with additional elements
of OWL, such as transitive properties and inverse properties. Table 3.1 sum-
marizes the elements of RDFS+. This language was defined before OWL2 (see
??) and it aimed to become a good trade-o↵ between RDFS and OWL-DL
(see ??): on the one hand it overcomes the limited expressiveness of RDFS
and on the other one it performs faster than OWL-DL. Nowadays RDFS+
language expressiveness can be considered as a subset of OWL2 RL (Section
??). The language is supported by several systems, such as AllegroGraph2

and SPIN3.

2Cf. http://www.franz.com/agraph/support/learning/Overview-of-RDFS++.lhtml
3Cf. http://topbraid.org/spin/rdfsplus.html
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TABLE 3.1: RDFS+ elements
Rule ID Body Head

rdf1 ?s ?p ?o ) ?p a rdf:Property
rdfs2 ?p dom ?c . ?x ?p ?y ) ?x a ?c
rdfs3 ?p rng ?c . ?x ?p ?y ) ?y a ?c
rdfs5 ?p1 sP ?p2 . ?p2 sP ?p3 ) ?p1 sP ?p3
rdfs7 ?p1 sP ?p2 . ?x ?p1 ?y ) ?x ?p2 ?y
rdfs9 ?c1 sC ?c2 . ?c2 sC ?c3 ) ?c1 sC ?c3
rdfs11 ?c1 sC ?c2 . ?x a ?c1 ) ?x a ?c2
prp-trp ?p a TP . ?x ?p ?y . ?y ?p ?z ) ?x ?p ?z
prp-inv1 ?p1 inv ?p2 . ?x ?p1 ?y ) ?y ?p2 ?x
prp-inv2 ?p1 inv ?p2 . ?x ?p2 ?y ) ?y ?p1 ?x
eq-sym ?x sA ?y ) ?y sA ?x

3.3 Running Example

The goal of IMaRS is the processing of the materialization of an ontological
entailment of the actual content of the active window and its incremental
maintenance across time. Usually, when the content of the window changes, a
set of triples is removed and another set of triples is added. The consequences
on the ontological entailments are therefore twofold: on the one hand there
can be inferred triples that are not valid anymore – triples derived by deleted
triples, on the other hand there are new inferable triples – triples that can be
derived by the new added data.

As running example, we refer to a scenario of stream processing over a
stream of posts of a social network, e.g. Twitter4. We consider a simple sce-
nario of a stream of published posts and each post is created by an author.
The TBox T is defined through SIOC; there two classes, sioc:UserAccount
representing the authors and sioc:Post representing the messages. Authors
and posts are related through a relation sioc:creator of and its inverse
property sioc:has creator. The formalization of T is:

sioc:UserAccount v >
sioc:Post v >
sioc:creator of ⌘ sioc:has creator�

ran(sioc:has creator) v sioc:UserAccount

Consequently, the serialization of T in N3 RDF is:

4Cf. http://www.twitter.com/
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@prefix sioc: <http://rdfs.org/sioc/ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
sioc:UserAccount a owl:Class .
sioc:Post a owl:Class .
sioc:creator of a owl:ObjectProperty .
sioc:creator of owl:inverseOf sioc:has creator .
sioc:has creator rdfs:range sioc:UserAccount .

Let’s suppose we are interested in retrieving the list of the active users in
the last 5 minutes. An active user is a user that created at least one post in
the previous minutes. We can represent the query through C-SPARQL in the
following way:

PREFIX sioc: <http://rdfs.org/sioc/ns#>
REGISTER QUERY active users AS
SELECT DISTINCT ?author
FROM STREAM <http://example.org/stream> [RANGE 5m STEP 1m]
WHERE{

?author a sioc:UserAccount;
sioc:creator of ?post

} GROUP BY ?author

Let’s consider now the scenario represented in Figure 3.1. At time ⌧1 = 10
(Figure 3.1(a)) two RDF timestamped triples of the stream S are in the active
window W1(whose scope is [5, 10)):

<:Adam sioc:creator of :tweet1>:[5]
<:Bob sioc:creator of :tweet2>:[7]

1

2

In the following, we indicate with ti the triple at line i. Triples in the
window are not enough to compute an non-empty answer of the query. Any-
way, the query can be answered if we consider the materialization obtained
exploiting the axioms in T from which several triples can be derived:

<:tweet1 sioc:has creator :Adam>
<:tweet2 sioc:has creator :Bob>
<:Adam a sioc:UserAccount>
<:Bob a sioc:UserAccount>

3

4

5

6
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FIGURE 3.1: Example of incremental derivation. (a) shows the IMaRS win-
dow W1 at ⌧1; (b) shows the IMaRS window W2 at ⌧2. In (b) the di↵erences in
the materialization are highlighted: they are the changes that the incremental
maintenance algorithm should apply to compute the correct materialization.
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Taking into account the materialization (triples t1 . . . t6) the answer is the
following:

• :Adam

• :Bob

At time ⌧2 = 11 the content of the window W2 (whose scope is [6, 11))
changes (Figure 3.1(b)): t1 expires, so it is deleted from the window, while the
triple t7 is added to the window:

<:Adam sioc:creator of :tweet3>:[10]7

The triples of the stream S in the active windows are now t2 and t7.
The ontology entailment is not valid anymore and has to be updated in the
following way:

• triple t3 has to be removed : it was derived from t1;

• triples t4 and t6 are maintained : they are derived from t7 and it is again
in the window;

• a new triple is added to the materialization:

<:tweet3 :has creator :Adam>8

because it is derived from t7 and T ;

• triple t5 is renewed : it is not derivable anymore from t1 but it can be
inferred from t7 and T .

3.4 Incremental Materialization algorithm for RDF
Streams

In this section, we present IMaRS and we explain how it helps in achieve
the behavior described above.

3.4.1 Assumptions and preliminary definitions

In the following, we introduce the definitions at the basis of the algorithm
presented above, and the assumptions until which the IMaRS algorithm works:
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FIGURE 3.2: Creation of the maintenance program

the use of windows to maintain the materialization, RDFS+ as ontological
language, and the absence of TBox assertion in the streams.

The computation of the materialization in an RDF stream engine is strictly
related to the window operator. The triples of the stream that have to be
considered for the materialization at a given time ⌧ are those contained in the
scope of the active window at that time.

We define IMaRS window a time-based sliding window that can main-
tain the materialization of the ontological entailment through IMaRS. A
IMaRS window has four parameters:

WIMaRS(!,�, T ,M) (3.1)

The two parameters ! and � are the same used in time-based sliding win-
dows [4]: ! is the size of the window and � is the slide parameter. T is the
TBox describing the model of the stream and M is the maintenance program.

A maintenance program M is the logic program that is executed over
the window content. It is composed by a set of rules (maintenance rules)
required to compute the two sets of triples �+ and �� that respectively have
to be added and removed to maintain the materialization.

The process of creation of the maintenance program M and the IMaRS
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FIGURE 3.3: Assignment of the expiration time to triples in S

window WIMaRS is depicted in Figure 3.2. The maintenance program M is
derived by the maintenance program generator: is takes as input a set of
rewriting rules and an ontological language L (e.g., RDFS+) expressed as a
set of inference rules. As explained in Section 3.4.2, for each inference rule, the
generator produces one or more maintenance rules and prunes part of them
exploiting the assumptions presented in this section.

The maintenance program M, and the TBox T (expressed through L) are
then used as one of input to create a IMaRS window.

An important notion at the core of our approach is the expiration time e.
It indicates the time at which a triple will not be valid anymore and it can be
consequently be removed from the window. Each triple in the IMaRS window
has an expiration time, both triples in the stream S and inferred ones. Recall-
ing the fact that a triple of the stream S is a timestamped triple <s, p, o>:[⌧ ],
it is worth noting that the expiration time e is an additional timestamp and it
is significantly related to ⌧ . We indicate a triple t = <s, p, o> with application
time ⌧ and expiration time e in the following way: <s, p, o, e>:[⌧ ] (or shortly
te:[⌧ ]). The expiration time e for a triple t is set in the following way:

1. if the triple t:[⌧ ] is in the stream S, then its expiration time is set to
e = ⌧ + ! (where ! is the window width), because by that time the
triple will no longer be in the scope of the window;

2. if the triple t is derived by a set of triples<s1, p1, o1, e1>, . . . , <sn, pn, on, en>
in the actual materialization of the window W and by a set of triples
d1, . . . , dm of the TBox T , then its expiration time is set to e =
min{e1, . . . , en}, because the deduction will no longer hold as soon as
one of the triples, which it is derived from, expires.

For the sake of comprehension, in the following, we omit the application
time ⌧ and we only use <s, p, o, e> to indicate that the triple <s, p, o> has
an expiration time e.

The introduction of the expiration time introduces the possibility that the
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IMaRS window will contain the same triple several times. We define a triple
te11 duplicate of te22 if t1 = t2 (the two triples have the same subject, predicate
and object).

Exploiting this definition, we can now define the notions of renewal and
most recentness. A triple te11 is renewed by a triple te22 if they are dupli-
cates and e2 > e1. Given a set of duplicates D = {te1 , . . . , ten}, te 2 D is the
most recent triple if it has the latest expiration time, i.e. it does not exist a
triple te

0 2 D such that e0 > e.

Duplicate triples in the window usually do not a↵ect the query answering
process; they could at most influence the number of returned results: in a case
of a SELECT query the answer could contain several duplicate tuples. On the
other hand it is mandatory to consider the most recent triple of a duplicate
set when maintaining the materialization: in fact the inference process should
take into account the most recent triples to assign the correct expiration time
to new triples and consequently to preserve the completeness of the ontological
entailment.

An important assumption of IMaRS is about the ontological language,
the algorithm can be proved to correctly maintain the ontological entailments
of a knowledge base expressed in RDFS+ (and consequently its subsets e.g.,
RDFS). At the moment IMaRS does not work with the OWL-RL language;
we plan to extend the algorithm to support OWL-RL in our future works, as
we discuss in Section 3.7.

The TBox T is considered to be static knowledge and we assume it is
always valid. It means that T is part part of the materialization (IMaRS
takes T into account in the derivation process) and its axioms do not expire.
We denote this fact associating expiration time e = 1 to TBox statements.
We additionally assume that the input stream S cannot contain triples that
extend or alter T . We discuss in Section 3.7 the problem of relaxing those
constraints.

3.4.2 Maintenance program generation

In this section, we explain the process that generates the maintenance
program M given an ontological language L. The ontological language L is
defined by a set of inference rules.

As we explained above in the previous section, the task of M is the com-
putation of two sets of triples �+ and �� that contain respectively the triples
that should be added to the materialization and those that should be removed
in order to maintain the ontological entailment correct and complete. M uses
several graphs (namely, contexts) in order to compute �+ and ��. Table 3.2
introduces the contexts used by the IMaRS maintenance program. In addition
to �+ and ��, IMaRS uses:

• the Mat context to store the actual materialization;
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• the Ins context to store the triples of S that enter the window and triples
derived by them;

• the New context to store the candidate triples to be added to the ma-
terialization;

• the Ren context to store duplicate triples that are renewed.

We denote the fact that an RDF triple t = <s, p, o> with expiration time e
is contained in a context C with a quintuple using the two following notations:

• a long version – <s, p, o, e, C>;

• a short version – te:C.

Given the sets I (IRIs), B (blank nodes), L (literals), C (contexts) and N ⇢ L
(natural numbers) we define <s, p, o, e, C> as a member of (I [B)⇥ I ⇥ (I [
B[L)⇥N⇥C. In a similar way, we extend the concept of triple pattern tp [12]
to take into account the expiration time and the context. An extended triple
pattern is a member of the set: (I[B[V )⇥(I[V )⇥(I[B[L[V )⇥(N[V )⇥C
(where V is the set of variables). We indicate with the notation tpe : C the set
of triples in C that satisfies tp.

We use these two notations to define the maintenance rules. A maintenance
rule � is a rule5 in the form:

tpe11 :C1 . tpe22 :C2 . . . . . tpenn :Cn . fb(e1, . . . , en, now) ) tpe:C (3.2)

The body of the rule is a conjunction of conditions tpex
x
:Cx and a boolean

function fb. A condition is satisfied if there is a mapping µx that, when applied
to tpex

x
, allows to obtain a triple tex

x
in Cx. Consequently the body is satisfied

if there exists at least a mapping µ that allows to satisfy each condition. fb
is a boolean function used to specify constraints on the expiration times of
the involved triples; the function uses one or more expiration time stamps in
e1, . . . , en and a built-in now. now returns the time stamp of the update of
the window contents (when the last window closes). It is worth to note that
now could not change during the execution of M; if it happens it means that
the system is overloaded.

The head tpe:C indicates that if the body is satisfied by mappings Mp =
µ1, . . . , µm, then the triples te1, . . . , t

e
m

obtained applying each mapping in Mp
to tpe are added to C. Expiration time e is computed through a function that
takes as parameters the expiration time stamps of the conditions (e.g., the
min function).

The maintenance rules can be easily rewritten in di↵erent languages; for

5The rule format is similar to the inference rules defined in ??, extended with the expi-
ration time stamps, the context notions and a boolean function fb expressed on expiration
time stamps.
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TABLE 3.2: Contexts used by the maintenance program
Name Content

Mat Current materialization
�+ Net additions required to maitain the materialization
�� Net deletions required to maitain the materialization
Ins Set of timestamped triples in S inserted in the window in the last

update and their derivations
New Support context to compute the triples that should be added to

the materialization
Ren Set of triples that are renewed

example � can be rewritten in Datalog using the contexts Cx as Datalog pred-
icates and the other four elements (sx, px, ox and ex)6 as their arguments:

C(s, p, o, e) : �C1(s1, p1, o1, e1), . . . , Cn(sn, pn, on, en), fb(e1, . . . , en, now).
(3.3)

The maintenance program M is derived by the maintenance program gen-
erator;M is composed by two sets of rules,M1 andM2. The former is constant
while the latter depends on the input ontological language L. M1 defines the
relations among the contexts of M and the conditions under which it is possi-
ble to add a triple te in a context C; this set of rules is proposed in Table 3.3.

As we explain below, triples in the New and Ins contexts are used to
compute new triples that can be added to the materialization, adding them to
the Ins context. Rules �Old

1 and �Old
2 determine which are the renewed triples

(triples for which there is a most-recent triple in Ins); those triples will be put
in the Ren context. �Old

1 looks for renewed triples in Mat, while �Old
2 works

on Ins. Rule �New
1 puts in New all the triples of the materialization (Mat)

with valid expiration time (expiration time greater than the actual one, i.e.,
now). RDF triples of the TBox are always moved in New, due to the fact
they have expiration time 1. �New

2 puts in the New context the triples of Ins
that are not renewed (i.e., are not in the Ren context). ��1 and ��2 contain the
conditions until which triples can be added to ��: the former selects the RDF
triple expired, while the latter selects the renewed triples (i.e., i collects all the
duplicates generated in the maintenance program). Finally the delta context
�+ is computed through the two rules �++ and �+; a support context, �++

is used in the computation. It is a temporary context that contains triples in
the New context but not in Mat (with di↵erent expiration time). Then, the
di↵erence between �++ and Ren defines �+.

The set of maintenance rules in M2 is derived by the ontological language

6Symbols sx, px, ox and ex could be either variables or values



Incremental Reasoning on RDF streams 19

TABLE 3.3: Maintenance rules in M1

Name Maintenance Rule

�New
1 <?s, ?p, ?o, ?e,Mat> . (e � now)

) <?s, ?p, ?o, ?e,New>
�New
2 <?s, ?p, ?o, ?e,Ins> . ¬ <?s, ?p, ?o, ?e,Ren>

) <?s, ?p, ?o, ?e,New>
�Old
1 <?s, ?p, ?o, ?e1,Ins> . <?s, ?p, ?o, ?e,Mat> . (e1 > e)

) <?s, ?p, ?o, ?e,Ren>
�Old
2 <?s, ?p, ?o, ?e1,Ins> . <?s, ?p, ?o, ?e,Ins> . (e1 > e)

) <?s, ?p, ?o, ?e,Ren>
��1 <?s, ?p, ?o, ?e,Mat> . (e < now)

) <?s, ?p, ?o, ?e,��>
��2 <?s, ?p, ?o, ?e,Ren>

) <?s, ?p, ?o, ?e,��>
�++ <?s, ?p, ?o, ?e,New> . ¬ <?s, ?p, ?o, ?e1,Mat>

) <?s, ?p, ?o, ?e,�++>
�+ <?s, ?p, ?o, ?e,�++> . ¬ <?s, ?p, ?o, ?e1,Ren>

) <?s, ?p, ?o, ?e,�+>

L through a rewriting function �Ins(ir):

Name Rewriting function

�Ins(ir) {<?s1, ?p1, ?o1, ?e1,New> . <?si�1, ?pi�1, ?oi�1, ?ei�1,New> .
<?si, ?pi, ?oi, ?ei,Ins> . <?si+1, ?pi+1, ?oi+1, ?ei+1,New> .
. . . . < sn, pn, on, ?en,New> . ?e = min{?e1, ?e, ?en}
) <?s, ?p, ?o, ?e,Ins>}

This function is applied to each inference rule of L to generate the main-
tenance rules composing M2. Given an inference rule ir 2 L:

ir : ?s1 ?p1 ?o1 . . . . . ?sn ?pn ?on ) ?s ?p ?o

the rewriting function generates n maintenance rules, where n is the number
of conditions in the body of ir.

Considering the running example in Section 3.3, let’s now derive its main-
tenance program Mex. The TBox T of the example is written in RDFS+, so
this ontological language is the one that the maintenance program generator
should consider to produce Mex. For the sake of brevity, we take into account
the three RDFS+ rules rdfs2, prp-inv1 and prp-trp7 (see Table 3.1). As
explained above, Mex is the union of M1 and M2; M2 is derived applying the
rewriting function �Ins to every inference rule of RDFS+ and the result is
reported in Table 3.4. Let’s consider the inference rule prp-trp:

prp� trp : ?p a owl:TransitiveProperty . ?x ?p ?y . ?y ?p ?z ) ?s ?p ?o

7Even if the transitive rule is not useful for the running example, we consider it as an
example of rule with a body composed by more than two conditions.
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TABLE 3.4: M2 for a portion of RDFS+
<?p, rdfs:domain, ?c, ?e1,New> . <?x, ?p, ?y, ?e2,Ins> .

?e = min{?e1, ?e2}
)<?x, rdf : type, ?c, ?e,Ins>

<?p, rdfs:domain, ?c, ?e1,Ins> . <?x, ?p, ?y, ?e2,New> .
?e = min{?e1, ?e2}
)<?x, rdf : type, ?c, ?e,Ins>

<?p1, owl:inverseOf, ?p2, ?e1,New> . <?x, ?p1, ?y, ?e2,Ins> .
?e = min{?e1, ?e2}
)<?y, ?p2, ?x, ?e,Ins>

<?p1, owl:inverseOf, ?p2, ?e1,Ins> . <?x, ?p1, ?y, ?e2,New> .
?e = min{?e1, ?e2}
)<?y, ?p2, ?x, ?e,Ins>

<?p, rdf:type, owl:TransitiveProperty, ?e1,New> .
<?x, ?p, ?y, ?e2,Ins> . <?y, ?p, ?z, ?e3,Ins> .?e = min{?e1, ?e2, ?e3}
)<?y, ?p2, ?x, ?e,Ins>

<?p, rdf:type, owl:TransitiveProperty, ?e1,Ins> .
<?x, ?p, ?y, ?e2,New> . <?y, ?p, ?z, ?e3,Ins> .
?e = min{?e1, ?e2, ?e3}
)<?y, ?p2, ?x, ?e,Ins>

<?p, rdf:type, owl:TransitiveProperty, ?e1,Ins> .
<?x, ?p, ?y, ?e2,Ins> . <?y, ?p, ?z, ?e3,New> .
?e = min{?e1, ?e2, ?e3}
)<?y, ?p2, ?x, ?e,Ins>

The body of prp-trp is composed by three conditions, so �Ins will gen-
erate three maintenance rules. These rules cover all the possible cases on
which the derivation could be executed: one of the three triples in the body
is added in the materialization (in the Ins context) and the other two ones
are in the New context (candidate triples to be added to the new materi-
alization). It is worth to note that the maintenance rule �New

2 of M1 moves
triples from Ins to New: this allows to perform new derivations from de-
rived triples (and not only by triples of S). The first rules of �Ins(prp� trp)
states that if the Ins context contains a triple that satisfies the triple pat-
tern <?p,a,owl:TransitiveProperty,e1> and the New context contains
triples that satisfies <?x,?p,?y,e2> and <?y,?p,?z,e3>, then a new triple
<?x,?p,?z> with expiration time e = min{e1, e2, e3} will be added in the Ins
context. The other two rules are similar.

One of the assumptions done in Section 3.4.1 is that the stream S does not
modify the TBox T . It means that S can not contains TBox triples such as
<?p1,owl:inverseOf,?p2>; thus it is possible to optimize M2 in the following
way:
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TABLE 3.5: Optimized M2 (M+
2 ) for RDFS+

Name Maintenance Rule

�Ins1 <?p, rdfs:domain, ?c,1,New> . <?x, ?p, ?y, ?e,Ins>
)<?x, rdf:type, ?c, ?e,Ins>

�Ins2 <?p1, owl:inverseOf, ?p2,1,New> . <?x, ?p1, ?y, ?e,Ins>
)<?y, ?p2, ?x, ?e,Ins>

�Ins3 <?p, rdf:type, owl:TransitiveProperty,1,New> .
<?x, ?p, ?y, ?e1,New> . <?y, ?p, ?z, ?e2,Ins> .?e = min{?e1, ?e2}
)<?y, ?p2, ?x, ?e,Ins>

�Ins4 <?p, rdf:type, owl : TransitiveProperty,1,New> .
<?x, ?p, ?y, ?e1,Ins> . <?y, ?p, ?z, ?e2,New> .?e = min{?e1, ?e2}
)<?y, ?p2, ?x, ?e,Ins>

• delete the rules where a TBox triple is in the Ins context – it is not
possible to have that case;

• rewrite the expiration time assignment ?e = min{?e1, . . . , ?en} replacing
1 with ?ei associated to TBox triples.

Table 3.5 shows the optimized maintenance program M+
2 , derived by M2

through the application of the optimizations described above. It is possible to
observe that the new program is composed by a lower number of maintenance
rules (4 instead of 7). The maintenance rules of M+

2 are simpler than the ones
of M2: when the expiration time ?et associated to a TBox triple t is assigned
to1 it is easy to observe that: e = min {et, e1, . . . , en} = e = min {e1, . . . , en}.
Additionally, if there are only two expiration timestamps, the assignment et =
1 implies e = min {et, e1} = e1.

It is now possible to replace M2 with M+
2 and the maintenance program

for the running example is M+
ex

= M1 [M+
2 .

3.4.3 Execution of the maintenance program in the IMaRS
window

As explained above, the maintenance program M is used by the IMaRS
window to compute the ontological entailment and to maintain it correct and
complete. Every time the content of the window changes, the maintenance
rules run over the actual materialization to compute the new one. The main
steps of the materialization maintenance are:

• the actual materialization is in the Mat context;

• triples of S entering the windows are annotated with their expiration
time and are put in the Ins context;
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• the maintenance program is executed: rules are executed in a order de-
termined by the dependencies among them, as happens in Datalog¬

(Datalog with stratified negation);

• the materialization is updated adding the content of �+ and removing
the content of �� (i.e. Mat [�+ \��).

Let’s consider the running example to show how the IMaRS window works
to obtain the behaviour described in Section 3.3. Just to summarize, at ⌧1 =
10s the materialization Mat of the IMaRS window WIMaRS is:

<sioc:UserAccount a owl:Class,1>
<sioc:Post a owl:Class,1>
<sioc:creator of a owl:ObjectProperty,1>
<sioc:creator of owl:inverseOf sioc:has creator,1>
<sioc:has creator rdfs:range sioc:UserAccount,1>
<:Adam sioc:creator of :tweet1,10>:[5]
<:Bob sioc:creator of :tweet2,12>:[7]
<:tweet1 sioc:has creator :Adam,10>
<:tweet2 sioc:has creator :Bob,12>
<:Adam a sioc:UserAccount,10>
<:Bob a sioc:UserAccount,12>

1

2

3

4

5

6

7

8

9

10

11

In the following we indicate with ti the triple at line i. Triples t1, . . . , t5
are the TBox, triples t6 and t7 are part of the input stream S, while the other
triples (t8, . . . , t11) are the inferred ones. The triples have associated their
expiration time: for the TBox triples the expiration time is 1; triples t6 and
t7 have expiration time e = ⌧ + ! (respectively 10 and 12); triples t8 and t10
inherit their expiration time from t6 (10); in a similar way the triples t9 and
t11 inherit their expiration time from t7 (12).

At ⌧2 = 11, WIMaRS updates its contents (it has slide � = 1), so the
triple t12=<:Adam sioc:creator of :tweet3>:[10] of S should be added
to WIMaRS . t12 is annotated with expiration time 17 and it is placed in the
Ins context. At this point the maintenance program M+

ex
is executed. We

report a possible execution plan in Table 3.6. In each column is reported
the content of the contexts during the execution of the plan. In each row a
maintenance rule is applied; the triples that are added to contexts by the
rules are highlighted in bold. In addition to the triples we described above, in
the table there are also t13 and t14: triple t13 is <:tweet3 sioc:has creator
:Adam,17> and it is inferred by t12 and t4 through the rule �Ins2 ; t14 is <:Adam
a :UserAccount,17> and it is inferred by t12 and t5 through the rule �Ins1 .
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TABLE 3.6: Execution of the maintenance program M+
ex
. Triple derived and

added to contexts by the maintenance rule are highlighted in bold.
Rule Ins New Ren �� �++ �+

t12
�New
1 t12 t1, . . . , t5,

t7, t9, t11
�Ins2 t12,t13 t1,. . . ,t5,

t7,t9,t11
�Ins1 t12,t13,t14 t1,. . . ,t5,

t7,t9,t11
�Old
1 t12,t13,t14 t1,. . . ,t5,

t7,t9,t11

t10

�New
2 t12,t13,t14 t1,. . . ,t5,

t7,t9,t11,
t12, t13,
t14

t10

��2 t12,t13,t14 t1,. . . ,t5,
t7,t9,t11,
t12,t13,t14

t10 t10

��1 t12,t13,t14 t1,. . . ,t5,
t7,t9,t11,
t12,t13,t14

t10 t6, t8,t10

�++ t12,t13,t14 t1,. . . ,t5,
t7,t9,t11,
t12,t13,t14

t10 t6,t8,t10 t12, t13,
t14

�+ t12,t13,t14 t1,. . . ,t5,
t7,t9,t11,
t12,t13,t14

t10 t6,t8,t10 t12,t13,t14 t12, t13,
t14
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3.5 Related works

The origin of the approach, which we follow in this work, can be found in
incremental maintenance of materialized views in deductive databases [7, 14].
In these works, authors researched on how to generate a persistent view in
a deductive databases and how to maintain it incrementally through set of
updates. They proved that when the number of modification in the database
is under a threshold, the incremental maintenance techniques perform orders
of magnitude faster than the whole re-computation of the view.

In the Semantic Web community the most relevant work is [15], where
authors proposes an algorithm to incrementally maintain an ontological en-
tailment. Their technique is a declarative variant of the delete and re-derive
(DRed) algorithm of [14]. The general idea of DRed is a three-steps algoritm:

1. Overestimate the deletions: starting from the facts that should be
deleted, compute the facts that are deducted by them;

2. Prune the overstimated deletions: determine which facts can be
rederived by other facts;

3. Insert the new deducted facts: derive facts that are consequences of
added facts and insert them in the materialization.

The version of DRed proposed by [15] is written in Datalog¬. Table 3.7
shows the list of the Datalog predicates used by DRed (as we explained above,
they are similar to the contexts used by IMaRS). The extensions of T before

and T after are the materialization before and after the execution of DRed.
The goal of the algorithm is the computation of two Datalog predicates, T+

and T�, that should be respectively added and removed to the materializa-
tion to compute the new one. T del, T red, and T ins are the three predicates
used for storing the intermediate results of DRed: in the extension of T del are
stored the deletions (step 1); in the extension of T red are stored the overesti-
mated deletions (step 2); finally in the extension of T ins are stored the new
derivations (step 3).

Given an ontological language L expressed as set of inference rules8, DRed
derives a maintenance program. As IMaRS, the maintenance program of DRed
is composed by two set of rules. The first set is fixed and it is reported in the
first part of Table 3.8. The second set is derived by L through the rewriting
functions reported in the second part of Table 3.8.

IMaRS is inspired by DRed; the main di↵erence is that our algorithm
makes the assumption that the deletion can be predicted. It is not valid in
general, but it holds for stream reasoning: the window operator allows to
determine when RDF triples of the stream are removed.

8An inference rule <?s1, ?p1, ?o1 > . . . . . <?sn, ?pn, ?on >)<?s, ?p, ?o > in Datalog
can be represented as P(s, p, o) : �P(s1, p1, o1), . . . , P(sn, pn, on)
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TABLE 3.7: Datalog predicates used by DRed
Name Content

T before Current materialization
T+ Net insertions required to maitain the materialization
T� Net deletions required to maitain the materialization
T del The deletions
T ins The explicit insertions
T red The triples marked for deletion which can be alternatively re-

derived
T after The materialization after the execution of the maintenance pro-

gram

TABLE 3.8: Maintenance rules and rewriting functions of DRed
Maintenance rules

Tafter(s, p, o) : �Tbefore(s, p, o), not Tdel(s, p, o)
Tafter(s, p, o) : �Tred(s, p, o)
Tafter(s, p, o) : �Tins(s, p, o)
T+(s, p, o) : �Tins(s, p, o), not Tbefore(s, p, o)
T� : �Tdel, not Tins, not Pred
Rewriting functions for inference rules of L
Tred(s, p, o) : �Tbefore(s, p, o), Tafter(s1, p1, o1), . . . , Tafter(sn, pn, on)
{Tdel(s, p, o) : �Tbefore(s1, p1, o1), . . . , Tbefore(si�1, pi�1, oi�1),

Tdel(si, pi, oi), Tbefore(si+1, pi+1, oi+1), . . . , Tbefore(sn, pn, on)}
{Tins(s, p, o) : �Tafter(s1, p1, o1), . . . , Tafter(si�1, pi�1, oi�1),

Tins(si, pi, oi), Tafter(si+1, pi+1, oi+1), . . . , Tafter(sn, pn, on)}
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Other approaches to Stream Reasoning are ETALIS [3, 2], Sparkwave [11],
Streaming Knowledge Bases [16] and Stream Reasoning via Truth Mainte-
nance Systems [13].

ETALIS [3] is a Complex Event Processing system grounding event pro-
cessing and stream reasoning in Logic Programming. It is based on event-
driven backward chaining rules that realise event-driven inferencing as well
as RDFS reasoning. It manages time-based windows using two techniques.
On the one hand, it verifies the time window constraints during the incre-
mental event detection, thus it does not generate unnecessary intermediary
inferences when time constraints are violated. On the other hand, it periodi-
cally prunes expired events by generating system events that look for outdated
events, delete them, and trigger the computation of aggregated functions (if
present) on the remaining events. ETALIS o↵ers EP-SPARQL [2] to process
RDF streams. EP-SPARQL is an extension of SPARQL under RDFS entail-
ment regime which combines graph patterns matching and RDFS reasoning
with temporal reasoning by bringing in the ETALIS’s temporal operators.

IMaRS and ETALIS are largely incomparable. ETALIS focuses on back-
ward temporal reasoning over RDFS, while IMaRS focuses on forward rea-
soning on RDFS+. The temporal reasoning is peculiar of ETALIS and it is
not present in IMaRS. This restricts the comparison to the continuous query
answering task only. The evaluation of IMaRS shows that, in the chosen exper-
imental setting, the continuous query answering task over a materialisation
maintained by IMaRS is faster that backward reasoning. However, further
investigation is needed to comparatively evaluate the two approaches.

Sparkwave [11] is a solution to perform continuous pattern matching over
RDF data streams under RDFS entailment regime. It allows to express tem-
poral constraints in the form of time windows while taking into account RDF
schema entailments. It is based on the Rete algorithm [10] which was proposed
as a solution for production rule systems, but it o↵ers a general solution for
matching multiple patterns against multiple object. The Rete algorithm trades
memory for performance by building two memory structures that check the in-
tra and inter-pattern conditions over a set of objects, respectively. Sparkwave
adds another memory structure, which computes RDFS entailments, in front
of the original two. Under the assumption that the ontology does not change,
RDFS can be encoded as rules that are activated by a single triple from the
stream. Therefore, each triple from the stream can be treated independently
and in a stateless way. This guarantees for high throughput. Moreover, Spark-
wave adds time-based window support to Rete in an innovative way. While
the state-of-the-art [18] uses a separate thread to prune expired matchings,
Sparkwave prunes them after each execution of the algorithm without risking
deadlocks and keeping the throughput stable.

Sparkwave is very similar to IMaRS on a conceptual level. It o↵ers an e�-
cient implementation of the IMaRS’s maintenance program for RDFS. How-
ever, the approach proposed by Sparkwave cannot be extended to RDFS+
(i.e., the ontological language targeted by IMaRS). As stated above, RDFS



Incremental Reasoning on RDF streams 27

can be encoded as rules that are activated by a single triple from the stream,
whereas the owl:transitiveProperty construct of RDFS+, when encoded
as a rule, is activated by multiple triples from the stream. This means that the
stateless approach of Sparkwave is no longer su�cient. The IMaRS’s main-
tenance program for RDFS+ cannot be implemented in Sparkwave. Future
investigation should comparatively evaluate IMaRS and Sparkwave.

Sparkwave is also di�cult to compare with ETALIS, because it does not
cover temporal reasoning, but the authors of Sparkwave have temporal rea-
soning in their future work. They intend to rely on existing works reported
in [17, 19], which investigate the integration of temporal reasoning in Rete.

Streaming Knowledge Bases [16] is one of the earliest stream reasoners.
It uses TelegraphCQ [8] to e�ciently handle data stream, and the Jena rule
engine to incrementally materialise the knowledge base. The architecture of
Streaming Knowledge Bases is similar to the one of the C-SPARQL Engine.
It supports RDFS and the owl:inverseOf construct (i.e., rules that are ac-
tivated by a single triple from the stream), therefore the discussion reported
above for Sparkwave also applies to it. Unfortunately, the prototype has never
been made available and no comparative evaluation results are available.

IMaRS and all the works above trade expressiveness for performance. They
use light-weight ontological languages and time-based windows to optimise the
reasoning task and, consequently, to perform continuous reasoning tasks with
high throughputs. The authors of [13] take a di↵erent perspective; they inves-
tigate the possibility to optimise Truth Maintenance Systems so to perform
expressive incremental reasoning when the knowledge base is subject to a large
amount of random changes (both updates and deletes). They optimise their
approach to reason with EL++, the logic underpinning OWL 2 EL, and pro-
vide experimental evidence that their approach outperform re-materialisation
up to 10% of changes.

3.6 Evaluation

In this section, we report the evaluation of IMaRS. As described in [5],
we set up a set of experiments to measure the materialization time. In each
experiment there is a window that slides over a stream, and at each update
of the window content we measured the time required to compute the mate-
rialization. We considered three three di↵erent methods:

• naive: the materialization is recomputed every time the content of the
window changes;

• DRed-LP: the materialization is computed through DRed, applying
the algorithm described in [15];
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FIGURE 3.4: Evaluation results

• IMaRS: the materialization is computed through IMaRS.

DRed-LP and IMaRS have been implemented on the top of the Jena Generic
Rule Engine9.

The input streams are generated by a synthetic data generator. In each
experiment we vary the percentage of changes in the window content, i.e., the
number of triples in the window and the number of triples that are added
and removed when the window slides. The schema used by the input stream
is composed by a transitive property :discuss; the property relates two mes-
sages to indicate a that a message replies another one. For example the RDF
triple:

<:tweeti :discuss :tweetj>:[⌧]

states that :tweetj is discussed by :tweeti. Even if we consider a simple
TBox with one transitive property, the experiment is significant because tran-
sitivity is widely used in ontological Web languages (e.g., rdfs:subClassOf,
owl:sameAs, owl:equivalentClass). Moreover, transitive properties often
generate high numbers of facts, so they stress the system. Finally, the pres-
ence of transitivity make the ontological language no first-order rewritable,
so we focus on a study-case where the query answer can not be performed
through query-rewriting techniques.

The results of the experiments are reported in Figure 3.4. On the x-axis
there is the percentage of changes in the window, while in the y-axis there
is the time required to compute the new materialization. The naive approach
does not depend by the number of changes in the window content, due to the
fact that it recomputes the whole materialization every time. As explained
above, both the incremental techniques perform better than the naive one
when the number of the changes in the window are below certain thresholds.

The threshold for DRed is 2.5%. IMaRS is an order of magnitude faster
than DRed for up to 0.1% of changes and continues to be two order faster up
to 2.5%. Time performance of IMaRS starts to decrease when the changes are

9Cf. http://jena.apache.org/documentation/inference/index.html#rules
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higher than 8%, and it no longer pays o↵ with respect to the naive approach
when the percentage is above 13%.

3.7 Conclusions and future works

In incremental maintenance approaches, developed first for view main-
tenance in deductive databases and then for other applications, such as the
ontological entailment maintenance, the major problem is the deletion: in gen-
eral, it is not possible to know when a fact would be removed. This is not true
in an RDF stream engine: the window operator slides over the input stream
with regularity; as consequence, as soon as a triple enters in the scope of the
window, IMaRS can compute when it will exit the scope of the window. We
exploited this fact to design IMaRS, an incremental maintenance algorithm
that extends DRed to maintain the ontological entailment of the content of a
window.

When the window has the size parameter higher than the slide parameter
the window content changes very often and only little portion of content are
added and removed10; this is the case where IMaRS performs in the better
way. When the window is tumbling (i.e. the stream is partitioned and the
window content completely changes every time) the incremental approaches
usually fail and the naive one has better time performance.

We analysed a borderline case, where the TBox is static and the whole
ABox is dynamic and contained in the data stream. In the general case, the
ABox assertions are both dynamic and static: in addition to the data streams,
there are static ABox assertions, usually stored in one or more knowledge
bases. Additionally, the volume of the static knowledge is much greater than
the one of the data stored in the window. In this setting, the IMaRS incre-
mental maintenance approach is faster than the naive one: the percentage of
variations at each step is limited (even if the window is tumbling)11.

At the best of our knowledge, at the moment IMaRS has two implementa-
tions. The first is the proof-of-concept we developed at Politecnico di Milano:
it is developed over the Jena Generic Rule engine and it uses forward chaining
to execute the maintenance program. It is not publicly available; at the mo-
ment we are working to implement it in an RDF stream engine. The second
(partial) implementation is in Sparkwave [11]: in this work the authors imple-
mented IMaRS’s maintenance program for RDFS using an extended version
of the Rete algorithm.

We foresee several extensions to this work. An open problem is the multi-

10Under the assumption that the elements in the input stream are uniformly distributed.
11In a similar way to the TBox assertions, the static ABox assertions do not expire, i.e.,

they have expiration time 1
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query over a single stream: several queries (each of them with its own window
definition) are registered over the same stream. It is very common in stream
applications, with a set of windows that slide over the stream at di↵erent inter-
vals. A possible solution is to build the ”maximal common sub-window” and
apply IMaRS over it; this is an original instance of multi-query optimization
problem and it is possible when query are pre-registered (such as in stream
engines).

Another direction we would like to focus on is related the reasoning part of
IMaRS. We want to study how to extend IMaRS to support a language more
expressive than RDFS+. First, we would like to investigate the extension to
the OWL 2 RL profile: in order to do so we should understand how IMaRS
should react when it finds inconsistency in the materialization. Second, it
can be interesting to include in IMaRS negation-as-failure. The maintenance
program generator should be extended to be able to process rules where the
head is false (such as in prp-irp of OWL 2 RL). In deductive database this
problem has been studied by [7].

We are also interested in the problem of relaxing the constraint of the
absence of TBox statements in the stream. The main issue is to understand
what a TBox axiom with a time stamp ⌧ in a stream means: is the statement
valid since ⌧? Or is it valid also in the past? The answer to these questions
influence the way the system should handle the statement and how this state-
ment should be considered in the materialization process. A possible solution
could be to consider a temporal extension of the ontological language to cope
with this problem.
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