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Abstract. Two complementary benchmarks have been proposed so far
for the evaluation and continuous improvement of RDF stream proces-
sors: SRBench and LSBench. They put a special focus on different fea-
tures of the evaluated systems, including coverage of the streaming exten-
sions of SPARQL supported by each processor, query processing through-
put, and an early analysis of query evaluation correctness, based on com-
paring the results obtained by different processors for a set of queries.
However, none of them has analysed the operational semantics of these
processors in order to assess the correctness of query evaluation results.
In this paper, we propose a characterization of the operational seman-
tics of RDF stream processors, adapting well-known models used in the
stream processing engine community: CQL and SECRET. Through this
formalization, we address correctness in RDF stream processor bench-
marks, allowing to determine the multiple answers that systems should
provide. Finally, we present CSRBench, an extension of SRBench to ad-
dress query result correctness verification using an automatic method.

1 Introduction

In the last years, several efforts [1–4] have focused on exposing data streams in
RDF-aware formats or on making them available through SPARQL-based query
languages, so that data streams can be more easily integrated with other data
sources and queried in a uniform manner. Enabling the comparison between
those systems (in this paper we refer to them as RDF stream processors or
engines) is an important task, but it is not a trivial task: they support different
forms of RDF streaming, including different query languages, operators, and
different evaluation semantics for constructs that are syntactically similar. This
is the reason why benchmarking is a relevant activity in this context.

There are good examples of benchmarking activities both in the RDF world
(e.g., LUBM [5] and BSBM [6]) and in the data streaming world (e.g., Linear-
Road [7]). Some early efforts have been done as well in the context of RDF
Streaming benchmarking: LSBench [8] and SRBench [9]. LSBench is mainly fo-
cused on understanding the throughput of existing RDF Stream processors and



checking correctness by comparing the results of different processors and quanti-
fying the mismatch among them. SRBench is mainly focused on understanding
coverage for SPARQL constructs. However, they do not consider the different
operational semantics of the benchmarked systems.

In our work, we focus on correctness and propose a characterization of the op-
erational semantics of RDF stream processors. First, we define a common model
to capture the different behaviours of the systems. We take into account two
existing and well-known work of the data streaming world: CQL [10] and SE-
CRET [11]. CQL is a continuous extension of SQL: its semantics defines a formal
model with three kinds of operators (S2R, R2R and R2S) that process and trans-
form streams and relations. This model has been taken into account by several
systems of the streaming and RDF streaming worlds (e.g., C-SPARQL, CQELS,
and SPARQLstream). SECRET is a framework to characterise and analyse the
operational semantics of the window operators. We adapt these two models to
be applied to RDF Stream engines, defining a model that can be used to assess
the correctness of the systems. To prove it, we extend SRBench with a set of
test queries to check if the answers provided by the RDF stream engines are
correct. Finally, we perform the experiments executing the queries on existing
RDF stream engines and checking the answers they provide. The verification is
up to an oracle we developed to check if the results are correct, given the system
operational semantics. To summarize the contributions of this paper:

– We motivate the need to understand the operational semantics of RDF
stream processors using simple examples (Section 2).

– We define a model for describing such operational semantics (Sec-
tion 3), adapting well-known models used in the data stream management
systems (DSMS) area: CQL [10] and SECRET [11].

– We characterize existing RDF stream processors according to the
operational semantics model (Section 4).

– We identify new dimensions to be considered in RDF stream processor
benchmarking, especially w.r.t. correctness evaluation, which are comple-
mentary to those from LSBench and SRBench (Section 5.1).

– We propose CSRBench, an extension of SRBench to address correctness
verification (Section 5.2).

– We describe how to design (Section 6.1) and implement (Section 6.2) an
oracle to automatically check the correctness of results given the
operational semantics of the benchmarked system .

– We report on the results obtained applying CRSBench to C- SPARQL [1],
SPARQLstream [2], CQELS [3] (Section 6.3).

– We elaborate on the lessons learned that could be used by RDF stream
processor developers to improve their systems (Section 7).

2 Motivation

As discussed in the introduction, two main benchmarking activities for RDF
stream processors have been proposed in the past years (LSBench and SRBench).



While these two evaluation efforts provide relevant contributions to the state of
the art, one common limitation is that they do not consider checking the output
produced by RDF stream processors. SRBench defines only functional tests in
order to verify the query language features supported by the engines, while
LSBench does not verify the correctness of the answers, but limits the analysis
of correctness to the number of outputs. In sum, both benchmarks make two
assumptions: 1) the tested systems work correctly, and 2) the tested systems have
the same operational semantics. However, these assumptions do not always hold
for all RDF stream engines, and hence these benchmarks may supply misleading
information about them.

In fact, RDF stream processors do not always adhere to their operational
semantics, as shown in [12]. Furthermore, even when RDF stream engines comply
with their own semantics, these may differ from each other and therefore produce
different but correct results. This means that it is considerably more difficult to
compare these engines than those that process static SPARQL queries. Not only
are correct answers determined by the input stream and the query, applying
a given SPARQL extended algebra, but also by the operational semantics of
each system. As an example, let’s consider a simplified version of the scenario
described in [3]: an RDF stream S reports the presence of persons in two rooms
at a given time. More precisely S contains timestamped triples of the form 〈pi

:detectedAt rj〉:t, where pi and rj are person and room individuals and t is a
timestamp, as depicted in Figure 1. The C-SPARQL query in Listing 1 asks for
the room where two individuals m1,m2 are detected in a time window of 10s.

Fig. 1: Stream S of person pi detected in room rj , queried with window (ω, β).

REGISTER QUERY query AS SELECT ?room

FROM STREAM <http://www.example.org/stream1> [RANGE 10s STEP 10s]

WHERE { <http://ex.org/m1> <http://ex.org/detectedAt> ?room .

<http://ex.org/m2> <http://ex.org/detectedAt> ?room }

Listing 1: C-SPARQL query retrieving the rooms where m1 m2 are detected

Intuitively the expected answer would be :r1 for the first window, and :r2 for
the second. This case is true if the window starts at time 0, as inW0 in Figure 1,
but it could also be the case that the engine starts windowing at t = 1 or t = 2
as illustrated by W1 and W2. For instance in the latter case the result is empty
because m1 and m2 are never detected in the same window.

Other noticeable differences are reflected on the policies used by RDF stream
engines for reporting and outputting query results. Consider the stream S in



Figure 2, and the same query of Listing 1 (and its equivalent queries in CQELS
and SPARQLstream). Even if they all start windowing at time 0, they produce
outputs differently, as depicted in the figure. CQELS reports as soon as the
content of the window changes, while the others do it only when closing the
window. And systems like C-SPARQL may produce an output even if it is empty,
while the others may produce no output at all in such cases. These and other
differences, already spotted in [12], show the need to provide a formal framework
for explaining the operational semantics of RDF stream processors.

Fig. 2: Different RDF stream engine results report policies of q over Stream S.

These types of behavioral differences have been also detected in non-RDF
stream processing engines. The SECRET [11] framework addressed this problem
by formalizing a set of parameters to explain the variations in query execution,
particularly those related to stream-to-relation operators, as we will describe in
Section 3. Formally characterizing RDF stream processors using a model like
SECRET is a key element to allow checking the correctness of query results.

3 RDF Stream Processor Characterization

Most RDF stream engines, including C-SPARQL, CQELS or SPARQLstream,
provide a processing model that can be described through the three main ab-
stract operators defined in the classical DSMS [10] model, as illustrated in Fig-
ure 3. A portion of the infinite input stream is selected through an S2R (stream-
to-relation) operator, typically a window, that produces (using SPARQL algebra
terminology) a set of mappings. Then, the R2R operators can process the finite
set of mappings (which would be named relation in the DSMS area) and trans-
form it into another one, usually through the evaluation of a query (following the
SPARQL 1.0/1.1 algebra) over the window content. Finally, the resulting set of
mappings can be converted into a stream by an R2S operator (relation-to-stream,
e.g. Rstream, Istream or Dstream [10]) and yield as the query output. It is worth
noting that if the SPARQL query is a CONSTRUCT/DESCRIBE, the answer
is an RDF graph, and the R2S operator will convert it into (part of) an RDF
stream, which could be used as input for another RDF stream processor. On the
contrary, if the R2R operator executes a SELECT/ASK query, the output will
not be a RDF stream, but a relational stream.



Fig. 3: RDF stream processor model: abstract operators.

In this work we focus mainly on the S2R and R2S operators, as the analysis of
R2R operators is well addressed by existing benchmarks. Additionally, to charac-
terize the window operator we refer to the model supplied by the SECRET [11]
framework, originally designed to support the task of integrating streaming data
processors, by means of explaining the different behavior of existing stream pro-
cessing engines (SPEs). As we will see in the following, SECRET can also be
used to model the behavior of the S2R operator of RDF stream processors.

Basic concepts. SECRET defines basic concepts that we briefly present in this
section. When appropriate, we show how they apply for RDF stream processors.

The time domain T is a discrete, linearly ordered, countably infinite set of
time instants t. A stream S is a set of countably infinite elements. A stream ele-
ment s is a triple1 〈v, tapp, τsys〉, where v is a tuple (for RDF stream processors,
it is an RDF statement) conforming to the schema S; tapp and τsys are time
instants in T that represent the application time and system time, respectively.
Unlike other works where only one timestamp is defined [10], SECRET takes
into account two timestamps. tapp indicates the time instant associated to the
event represented by the stream element. It can be shared by multiple elements
(introducing contemporaneity) and consequently defines a partial order among
the stream elements. τsys is the “wall-clock” time, which must be unique (i.e. no
elements can share the same τsys), thus introducing a total order in the stream.

Even if the application time is the relevant information from a conceptual
point of view, it is important to take into account the system time to explain the
correct behavior of stream processors. The existence of two relevant timestamps
and the related issues were defined and formalized in [13]. However, stream
processor models usually refer only to application time. It is also worth noting
that the timestamps are not part of the schema S, so they are usually not
considered in the condition clause while writing queries. Anyway, some systems
such as C-SPARQL relax this constraint by offering a timestamp function to get
the application timestamp and include conditions over them in the queries.

The window operator. A window over a stream S is a finite subset W of S.
SECRET considers only time-based windows, even if other types exist in SPEs
as well [10]. A time-based window over a stream S is a window with a time range
[o, c) (o, c ∈ T) that contains all and only the elements s ∈ S with application
time tapp such that o ≤ tapp < c. A window is open at time t if t ≤ c, otherwise
1 The additional batchid parameter originally included in SECRET is not used in RDF
stream processors to the best of our knowledge, so we omit it.



it is closed. An active window is the open window with the earliest starting time.
Figure 4 shows an example of windows over a stream: at time t = 6 window W1
has a range of [1, 4), so it is closed. On the contrary, both W2 (with range [3, 6))
and W3 (with range [5, 6)) are open, and additionally W2 is the active window.
Windows are usually defined through the size and slide parameters. The window

Fig. 4: Windows over a stream S

size (ω) can be computed as ω = c−o. The slide (β) is the distance between two
consecutive windows: for two consecutive windows Wn[on, cn) and Wm[om, cm),
β = om − on( 6= 0). The window in Figure 4 has size ω = 3 and slide β = 2.
When a time-based window slide is equals to the size, it is named tumbling. In
this particular setting no stream elements are shared between windows.

The SECRET model describes the behavior of time windows through four
functions: Scope, Content, Report and Tick.

Scope is a function that associates a time instant t to the time interval
[oaw, caw) of the active window aw at t. To compute the scope, it is neces-
sary to provide the t0 parameter, which is the application timestamp when the
first active window starts. It is an absolute time and it depends on both the
query (its registration time) and the RDF stream processor (how it processes
the query and instantiates the window).

The Content function receives as input a pair 〈t, τ〉 and identifies the set of
elements of S in the active window at t with a system timestamp earlier than τ .
This function depends not only on the scope (and consequently the application
time), but also on the system time: it means that asking for the content of the
active window at the same application time at two different system time instants
can produce two different results.

Report is a function that receives as input a pair 〈t, τ〉 and defines the required
conditions to pass the window content to the R2R operator. SECRET identifies
four reporting strategies (SPEs may use combined strategies as well):
– Content change: system reports if the content changes.
– Window close: system reports if the active window closes.
– Non-empty content: system reports if the active window is not empty.
– Periodic: system reports only at regular intervals.
The Tick function defines the condition under which the input can be added

to the window, becoming processable by the query engine. SECRET defines
different strategies: tuple-driven and time-driven. Systems with tuple-driven tick
strategy add input tuples in the window when they arrive, while systems with
time-driven tick strategy add sets of tuples to the window at each (application)
time instant.



The R2S operator. When the window operator reports, the active window
content is processed by the R2R operators, producing a timestamped set of
mappings. The list of timestamped set of mappings is transformed then into a
data stream (the system output), using the R2S operators defined by CQL [10]:
Rstream, Istream and Dstream.

Rstream streams out the computed timestamped set of mappings at each
step. Rstream answers can be verbose as the same mapping could be in different
portions of the output stream computed at different steps. It is suitable when it
is important to have the whole SPARQL query answer at each step, e.g., discover
popular topics in the last time period in a social network.

Istream streams out the difference between the timestamped set of mappings
computed at the last step and the one computed at the previous step. Answers
are usually short (they contain only the difference) and consequently this oper-
ator is used when data exchange is expensive. Istream is useful when the focus
in on the new mappings that are computed by the system, e.g., discover new
relevant topics in a social network.

Dstream does the opposite of Istream: it streams out the difference between
the computed timestamped set of mappings at the previous step and at the last
step. Dstream is normally considered less relevant than Rstream and Istream,
but it can be useful, e.g., to retrieve topics that are not relevant anymore.

Finally, we discuss the problem of the empty answers. During query execu-
tion, the output set of mappings could be empty, e.g., the R2R operator returns
an empty answer and the R2S is an Rstream, or the R2S operator is Istream
and the set of mappings at the last step is equal to the one at the previous step.
In these cases RDF stream processors can either output an empty answer, or do
not stream it out. This feature is different than the non-empty content report
strategy (presented above), which is strictly related to the window: it imposes
that the SPARQL query can be evaluated if the window content is not empty.
This feature is related to the R2S operator: it works on the set of mappings that
has to be streamed out by the system, so it implies that previously the window
operator reported and the SPARQL query was evaluated.

4 Classification of RDF stream processors

In the previous section we presented a model to describe the operational seman-
tics of existing RDF stream processors. The behavior of an RDF stream processor
depends on three elements: the inner features of the system, the query, and the
input data streams (e.g., it is not possible to determine the Content of a window
if the input data is unknown). In this section we focus on the RDF stream pro-
cessors features that can be described independently of the query and the input,
and we classify RDF stream processors systems according to these parameters.
We consider 3 systems: C-SPARQL, CQELS and SPARQLstream. C-SPARQL [1]



is an RDF stream processor built on top of Esper2 and Jena3: the first is used to
manage the streams and the windows over them, while the second executes the
SPARQL queries. CQELS [3] has a completely native implementation aimed at
achieving higher performance. Finally, SPARQLstream [14] adopts an ontology-
based data access to stream processing engines through query rewriting.

The systems are implemented in different ways, but their operational seman-
tics can be explained by the model in Section 3. These descriptions are important
not only to foresee how the systems have to work (and consequently to compute
the expected correct results), but also to highlight the differences between them.
We report in Table 1 the summary of our classification of RDF stream processors.

Feature Operator C-SPARQL CQELS SPARQLstream

Report strategy S2R Window close and
Non-empty content

Content-change Window close and
Non-empty content

Tick S2R Tuple-driven Tuple-driven Tuple-driven
Output operator R2S Rstream Istream Rstream, Istream

and Dstream
Empty relation no-
tification

R2S Yes No No

Time unit seconds hundreds millisec-
onds

hundreds millisec-
onds

Table 1: Classification of the RDF stream processors.

Even if the Report function does not depend only on the RDF stream pro-
cessor, the reporting strategies are strictly related to the system. C-SPARQL
and SPARQLstream follow the window-close and non-empty content strategies:
they evaluate the boolean query only if the active window is non-empty and
when it closes. These strategies allow a strict control on the output rate (the
window closes periodically) and a lower dependency on the input stream (only
the presence of data in the window, regardless of its rate, is one of the conditions
for reporting). On the other hand, CQELS adopts a content-change policy: it
evaluates the boolean query on the active window every time its content changes
(i.e., when new input data are added and when the active window slides and ex-
isting triples are removed). In this way the window operator is more dependent
on the data and the system can be highly reactive, but it offers no output rate
control. In the general case, if a burst arrives to the upstream system, the down
stream system will also suffer it.

Regarding the Tick, the three systems behave the same: they adopt a tuple-
driven approach, and move new data into the window as soon as available.

The C-SPARQL engine adopts an Rstream operator, outputting the empty
answer when it computes it. CQELS implements the Istream operator, and it
does not output empty answers. Finally, SPARQLstream implements all the three
R2S operators and, similarly to CQELS, does not output empty answers.

The last parameter we consider is the (application) time unit. In the model
presented in Section 3, the time is defined as a ordered set of discrete time
instants. Anyway, to classify the systems, we need a piece of information: the
minimal time unit that systems can support. In other words, what is the minimal
2 Cf. http://esper.codehaus.org/
3 Cf. http://jena.apache.org/



difference between two timestamps that guarantee the correct behavior of the
system. It is very complicated to determine this value, it depends on several
factors, e.g., number of input streams managed by the system, data input rate,
number of registered queries and their complexity, etc. In the environment we set
up for our experiments, the time unit for C-SPARQL is in the order of seconds,
while for CQELS and SPARQLstream it is in the order of hundreds milliseconds.

5 Extending RDF stream benchmarks

We have seen how existing RDF stream processors can be classified through the
model we described in Section 3. We exploited the SECRET model to charac-
terize the operational semantics of the window operators implemented by the
engines. In this section we will use the model to address the problem of de-
scribing the execution of a query, given an input stream and a system previously
characterized. This allows us to check the correctness of RDF stream engines, by
comparing the modeled output and the system actual output. We first identify
in Section 5.1 the main dimensions that we consider, and the we show how we
extended the SRBench benchmark for checking correctness in Section 5.2.

5.1 Problem Dimensions
Three main dimensions affect query results in RDF streaming query processing:
system, query and input stream data. For the system dimension, we consider:
– Report and tick policies, as described in Section 3.
– Window’s initial time t0, which is used by the system to determine the win-

dow scope (and consequently the content). While this parameter is usually
not configurable, it can be inferred in a post-execution analysis.

– Empty relation notification policy.
– Input stream timestamp policy.
For the query dimension, we mainly consider the S2R and R2S operators,

largely neglected in previous benchmarking efforts. Checking correctness with
different window configurations is one of the key elements of the proposed ex-
tensions. In particular we consider:
– Window size. Varying the window sizes (e.g. 10 s, 1 s, 100 ms, etc.) will

result in different scopes, and consequently different window content.
– Window slide. Variations on the window slide (e.g. slide every 1 s, every 10

ms, etc.) also produce differences on the scope. A slide equal to the window
size indicates that a window is tumbling, while a slide smaller than the size
produces a sliding window. We propose testing these different combinations.

– R2S operator. While some RDF stream systems provide only one default
operator for the output, others allow explicitly indicating the type of R2S
that is expected in the results.

For the input stream dimension, we can briefly mention the input data rate
(e.g. triples per second), the window content size (e.g. number of triples), and
the data stream distribution (constant, normal, bursts in the input data, etc.).



5.2 CSRBench: Correctness Extensions of SRBench

CSRBench is the extended benchmark for correctness checking, based on SR-
Bench, taking into account the properties described in the previous section, and
including the queries described below. To do so we have not modified the input
data in any sort, but we have mainly modified the benchmark queries in order
to stress the S2R operators, adding the following three types of queries to the
existing of SRBench. Because the queries are parametrized, the different combi-
nations are useful to produce a set of concrete queries that cover a wide range
of cases.

Parametrized window size and slide. By varying the window size and slide,
the query4 in Listing 2 allows testing different cases: different window sizes and
window slides (e.g. 10, 100, 1000 ms., etc.). Therefore, the value assigned to these
two parameters will allow obtaining sliding windows (slide is smaller than size)
or tumbling windows (slide is equal to size).

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>

PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#>

SELECT ?sensor ?tempvalue ?obs

FROM NAMED STREAM <http://cwi.nl/SRBench/observations> [NOW - %WSIZE% MS SLIDE %WSLIDE% MS]

WHERE { ?obs om-owl:observedProperty weather:_AirTemperature ;

om-owl:procedure ?sensor ;

om-owl:result [om-owl:floatValue ?tempvalue] .

FILTER(?tempvalue > %TEMP%) }

Listing 2: Parametrized window slide and size example in SPARQLstream

Parametrized aggregate query. Aggregate queries are commonly used in
stream processing, as the focus is sometimes on data trends and summarization
rather than on individual data points. Aggregates pose challenges to the compu-
tation of the window content, and depending on the streaming processor report
and tick policies, the results of a sum, average or other function may greatly vary.
This type of issues are often overlooked when querying single stream triples.

Joins of triples in different timestamps. The previous queries include graph
pattern matching of triples that are typically received at the same timestamp
(or nearly): e.g. an observation and its value, its type, etc. However, there are
cases where queries including joins at different timestamps may be relevant. This
is more challenging for query engines and correctness checking. For instance
the query in Listing 3 asks for sensor stations that record a high atmospheric
temperature variation, in a time window.

It is worth noting that this query produces answers when the temperature
increases or decreases (there is no control about the order of the observations, so
4 Full query descriptions in the three languages available at: http://www.w3.org/wiki/

CSRBench.



?value1 could be before or after ?value2). If we would like to write the query that
looks for increasing temperature values, we should write a multi-window query,
or we need a mechanism to put constraints on the application timestamps in the
query, such as C-SPARQL’s timestamp function.

PREFIX om-owl: <http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>

PREFIX weather: <http://knoesis.wright.edu/ssw/ont/weather.owl#>

REGISTER QUERY q AS SELECT ?sensor ?ob1 ?value1 ?obs

FROM NAMED STREAM <http://cwi.nl/SRBench/observations>[RANGE %WSIZE% S STEP %WSLIDE% S]

WHERE { ?ob1 om-owl:procedure ?sensor ;

om-owl:observedProperty weather:_AirTemperature ;

om-owl:result [om-owl:floatValue ?value1].

?ob2 om-owl:procedure ?sensor ;

om-owl:observedProperty weather:_AirTemperature ;

om-owl:result [om-owl:floatValue ?value2].

FILTER(?value1-?value2 > %VARIATION_THRESHOLD%) }

Listing 3: Query joining triples of different timestamps example in C-SPARQL

6 An Oracle for Correctness Checking

Once the benchmark is defined, we need a way to check if the results, provided by
a system to the benchmark queries and input, correspond to the expected ones
according to the system operational semantics. For this we propose an oracle
that generates and compares results of RDF stream processors and check their
correctness. The oracle works as follows: given a stream S, a continuous query
q, and an operational semantics M that describes how the target system should
work (Section 4), it produces a result ro. Furthermore, given a system result
rs for the same query q and input S, the oracle checks the correctness of rs by
comparing it to the theoretical answer ro (see Figure 5).

Fig. 5: Oracle for RDF Stream query results correctness checking.



6.1 Oracle design

The oracle is based on the off-line execution of a continuous query q, translated
to a static query q′, over an RDF dataset that simulates an RDF stream. The
oracle operates in two main stages: (i) the setup of the dataset, and (ii) the
execution and comparison of the results.

The main goal of the dataset setup is to produce an RDF dataset that sim-
ulates the real RDF stream input, and is composed of a metadata RDF graph
Gm and a set of data RDF graphs {Gt}, defined as follows. The original RDF
stream S is composed of timestamped triples of the form (〈s, p, o〉, t), where t is
the application timestamp, following the model of [15]. For each timestamp t in
S, a corresponding data graph Gt is created, and also the following metadata
triple is added in Gm: 〈Gt :hasTimestamp t〉. Finally, for each t, the triples of S
with timestamp t are imported into Gt, i.e. Gt = {〈s, p, o〉 | (〈s, p, o〉, t) ∈ S}.

Once the RDF dataset is set up, the oracle can execute the benchmark con-
tinuous queries over it, by translating them into a set of plain SPARQL queries
that will be successively executed over one or more of the Gt graphs. This succes-
sive execution simulates a continuous query over a limited amount of time. The
translation performed by the oracle in this work mainly considers the window
operators of the continuous query, and can be summarized as follows.

1. the oracle computes the set of values to be assigned to t0: {t10, t20, . . . , tk0};
2. it sets t0 to the next value ti0;
3. it determines the scope of the next window that will report. To do it, the

oracle considers the report strategy of the target system and it computes the
time interval [o, c) of the window;

4. next, the scope [o, c) is used to determine the window content. The ora-
cle selects which of the Gt graphs contains the data of the active window:
given the scope [o, c), the relevant graphs are {Gt | 〈Gt, : hasTimestamp, t〉 ∈
Gm and o ≤ t < c};

5. the window content is evaluated by the query engine. The oracle executes a
plain SPARQL query over the graphs determined by the previous step. The
SPARQL query preserves the graph patterns and output modifiers of the
original query q, only omitting the named window operators;

6. the answer of the query is a timestamped set of mappings, and it is added to
the oracle output stream ro(ti0). The conversion depends on the R2S operator
definition contained in the target system description;

7. if ro(ti0) is not complete, the oracle moves to step 3.

When the oracle results ro(ti0) is completely streamed out (the window slided
over the whole stream S), the oracle compares it with the RDF system output
rs. If they match, the experiment is successful, i.e., the system output is correct
w.r.t. its operational semantics M , and for input S and query q. Otherwise, the
oracle computes a new output stream starting from step 2. If none of the out-
put streams generated by the oracle ro(t10), ro(t20), . . . , ro(tk0) matches the output
stream rs of the system, the experiment fails.



6.2 Implementation

We have implemented a prototype of the proposed oracle and made it available
as an open source project5. The project repository supplies also all the resources
required to repeat the experiments: the input stream (with different streamer
implementations for the analyzed systems), the queries, and the code to execute
them in C-SPARQL, CQELS and SPARQLstream.

The oracle is built on the top of the Sesame framework, it implements the
algorithm described in the previous section and it is able to verify (off-line) the
results produced by the RDF stream processors. It can manage queries with one
time-based sliding window over a stream, it supports the whole SPARQL 1.1
query language, and it implements the three R2S operators Rstream, Istream
and Dstream. The oracle is configurable and it is possible to change both the
input stream and the benchmark queries. In this way it can also be used by RDF
stream processor developers to set up testing environments while implementing
their systems.

We plan to improve the oracle with several extensions. We aim to improve
output mechanism: at the moment the match between an oracle result ro and
the system result rs provides a boolean answer: true if rs is contained (or it is
equal) to ro, and false otherwise. We plan to provide a more expressive matching
mechanism, through the introduction of a precision rate, to help the analysis of
the results. Additionally, we plan to take into account also the verification of
quality of service metrics, such as the fact that the systems may provide results
with a maximum delay from the theoretical output time.

6.3 Experiments with RDF stream engines

We have used the oracle to check the correctness of the CSRBench queries,
for the three representative RDF stream engines already classified in Section 4,
and using their latest available implementations (as of April 2013)6: C-SPARQL
(0.9), CQELS (Aug 2011) and SPARQLstream (1.0.5). Because the benchmark
extensions put stress on the window operators, we left out other RDF stream
implementations such as EP–SPARQL [4], which do not include them.

The dataset used for experiments consists of a subset of the LSD dataset
of SRBench, which comprises weather observations from hurricanes in the US.
Only the data from hurricane Charley has been used, for a total of 3 hours of
records. Data is replayed with parametrized input rates. We defined 7 queries,
by instantiating the parameters of the three types of queries defined in Section 5:

– Q1. Query latest temperature observations and its originating sensor, filtered
by a threshold. ω = 10s, β = 10s, tumbling window.

– Q2. Query latest temperature observations and its originating sensor, filtered
by a threshold. ω = 1s, β = 1s, tumbling window.

5 Cf. https://github.com/dellaglio/csrbench-oracle
6 C-SPARQL: http://streamreasoning.org/download, CQELS: http://code.google.com/p/

cqels/, SPARQLstream: https://github.com/jpcik/morph-streams



– Q3. Query latest relative humidity observations and its originating sensor,
filtered by a threshold. ω = 4s, β = 4s, tumbling window.

– Q4. Query latest average temperature value, filtered by a threshold. ω = 4s,
β = 4s, tumbling window.

– Q5. Query latest temperature observations and its originating sensor, filtered
by a threshold. ω = 5s, β = 1s, sliding window.

– Q6. Query latest sensors having observations with a variation of temperature
values higher than a threshold. ω = 5s, β = 5s, tumbling window.

– Q7. Query latest sensors having observations with higher temperature values
than a fixed sensor station. ω = 5s, β = 5s, tumbling window.

Query C-SPARQL CQELS SPARQLstream

Q1 X X X
Q2 X X X
Q3 X X X
Q4 X × ×
Q5 × X X
Q6 X × X
Q7 X × X

Table 2: Correctness checking: results for C-SPARQL, CQELS and SPARQLstream.

7 Conclusions and Future work

As shown in Table 2, none of the RDF stream engines successfully passes all the
tests. This provides an idea of the difficulty of assessing correctness in this type
of systems. We now describe the cases where there are some failures.

Queries Q1, Q2 and Q3 focus on variations of the window size and slide, for
the case of tumbling windows. All the systems behave in the correct way and
provide the correct answers. These results are for the most part very similar in
terms of content, as the graph pattern of the queries operates over (almost) con-
temporaneous triples. The main difference is on the timing of the output. The
report policy of CQELS enables an almost immediate answer after a match is
produced. This behavior interestingly hides any difference on the use of a slide,
and consequently the results for Q1 and Q2 are virtually identical in CQELS.
Also, smaller windows such as the one in Q2 forced to configure the time reso-
lution of the processing engine, in the case of SPARQLstream, which otherwise
would be unable to slide at the given rate. In the case of SPARQLstream, the
results in these three queries with C-SPARQL is noticeable on the absence of
any output when no matches are produced. This situation must not be confused
with the absence of data in the input stream.

The other four queries exploited unexpected behaviours of the analyzed sys-
tems. C-SPARQL does not pass the experiment with Q5 : this query highlights
the use of an explicitly controlled slide, smaller than the window size. The prob-
lem is related to the fact that when a query is registered in C-SPARQL, there
is a transitory phase on which some open windows are erroneously reported.



When the system becomes stable and the first window closes, C-SPARQL starts
to behave correctly and works as expected. This wrong behaviour is related to
the sliding windows, in case of tumbling windows C-SPARQL works correctly.

SPARQLstream does not behave in the correct way with Q4. In general, this
query poses challenges in several aspects. The first and most obvious is related
to the t0 parameter (initial windowing time). Because the first window starts at
different points in each system, the resulting average values are completely dif-
ferent. The oracle adequately handles these variations, by computing results for
different possible values of t0. Nevertheless, other issues arise on the way aggre-
gates are implemented in the absence of matches in the graph patterns. In this
particular case, SPARQLstream outputs a null value instead of a 0 average value.
This unexpected behavior is the cause of the failure in Q4, although in other
cases the resulting values are correct. It is also worth mentioning that because
SPARQLstream uses a underlying SPE through query rewriting, by changing it
with another implementation, its modelled parameters (e.g. report, tick, etc.)
could also change. Therefore its operational semantics depend on the underlying
system it uses in a particular deployment.

Even CQELS does not provide the correct answer on Q4, and additionally it
shows wrong behaviours on Q6 and Q7. Both Q6 and Q7 focus on the evaluation
of joins in triples with different timestamps. In the first case the equality join is
on the observation sensor, which is a URI in the dataset, while in the second it is
basically a cross-product of a single fixed observation against all observations in
the window. In this case, the problem is given by the fact that CQELS does not
correctly remove the RDF statements from the active window. As result there are
aggregations and joins on elements that should not be in the window anymore,
and the system produces additional wrong mappings. This behaviour does not
emerge with other queries, thanks to the Istream operator: when queries filters
the input stream, the answers are computed looking for triple patterns over data
with the same application timestamp. Consequently, only answers obtained from
new data entering the window are output, due to the fact that the data already
present in the window produced answers that were output in previous steps.

In this work we made an effort to cover an existing gap in current benchmarks
for RDF stream processors. Checking the correctness of streaming query results
is complementary to other tests such as functional coverage, performance, scal-
ability, etc., but it is also key to assess how a system complies to its operational
semantics. A comparison among this type of systems is not possible if we are un-
able to judge whether their output is correct or not. To do so, we have introduced
a parametrized model based on SECRET and CQL, that provides a formal way
of explaining the operational semantics of RDF stream systems. Furthermore,
we have shown empirically that RDF Stream processors do not always comply
to these semantics and we have shown the cases where this happens, through
the CSRBench extensions and the Oracle.

We aim to improve our work in several directions. Some extensions to the
oracle development were already anticipated in Section 6. Additionally, we are
interested in studying the behaviour of systems when the query defines multiple



windows. The SECRET framework does not cover this point, and there are no
indications on the report strategies in these cases. Also, we did not consider
interval-based timestamps in RDF Streams, which are in general harder to deal
with. Finally, we would like to extend the approach to verify the correctness
of RDF stream processors that do not use windows, such as EP-SPARQL, and
that focus on sequence operators: it is important to understand the operational
semantics of those systems, and discover the similarities and the differences be-
tween them and the systems we targeted in this work.
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