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Abstract. In this paper, we propose an ontological formulation of the
planning domain and its OWL 2 formalization. The proposed meta-
model conceptualizes planning rules and actions and the causality be-
tween them. We also show that our planning metamodel can be seen as
a relevant scenario of the Open Provenance Model (OPM) and we define
our planning OPM profile.

This ontological representation is then exploited to define automated
means for the verification of correctness and consistency of a planning
domain model. We claim that Semantic Web technologies can provide an
effective solution to this important — and often underestimated — problem
for planning applications.

1 Introduction and Motivations

Planning is a branch of Al dealing with the automated creation of plans, i.e. a
sequence of actions that, starting from an initial state of the “world”, leads to a
state that meets some desired goals. Finding a suitable plan among all possible
sequences of actions is a complex problem that requires a detailed comprehension
of the world, the agents acting in this world, the possible actions, the causal
relationships between those actions, etc. The specification of such knowledge
about the planning problem is usually indicated as domain theory.

When formalizing a domain theory in some representation format, it is there-
fore key to use an enough expressive language and to assure the correct and
consistent representation of the world, so that the planning algorithms can op-
erate and compute the optimal plans. Several approaches and languages have
been proposed in literature to formalize the planning problem, including the
well-known STRIPS [1] and the more recently standardized PDDL language [2].
Those representation formats and languages are also employed to check the con-
sistency of the generated plans (e.g., to recognize an inconsistency in a plan if
two incompatible events are applied simultaneously).

Checking the coherence and rationality of the domain theory itself, on the
other hand, is a task that is usually discarded or delegated to the modeller that
formalize the planning problem. When modelling the actions and their causal
relationships, for example, it is indeed important to validate the model, e.g. by
checking that all modelled states of the world are “reachable” in a sequence of
actions. Especially when the domain theory is large and complex, this kind of
validation becomes of utmost importance.
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In this paper, we illustrate how the Semantic Web can be successfully em-
ployed to represent and reason upon such planning domain models. We propose
an ontological formalization of a planning metamodel, i.e. a domain-independent
specification of the planning problem, on top of which different domain theories
can be developed to represent different planning situations. In doing so, we also
show that the planning metamodel can be seen as a relevant application case of
the Open Provenance Model (OPM) [3]; we provide an OPM profile by mapping
the planning metamodel to one of the ontological formulation of OPM, namely
the Open Provenance Model Vocabulary (OPMV) [4]. The ontological formu-
lation can then be employed to define a set of rules to check the consistency
of a domain theory that uses the planning metamodel; this is aimed at giving
modellers a means to check and support their modelling task.

The remainder of the paper is structured as follows. Section 2 introduces the
ontological formulation of the planning problem, together with its representation
in OWL 2 [5] and the explanation of our modelling choices; Section 3 explains the
planning metamodel as an OPM Profile and its semantics; Section 4 gives some
examples of automated checks of the causality in domain theories defined on the
planning metamodel. We present a complex scenario of Simulation Learning for
Crisis Management in Section 5, in which we apply our metamodel; related work
is illustrated in Section 6 while Section 7 concludes the paper and gives some
hints on possible extensions of this work.

2 The Ontological Formulation of the Planning Problem

Ontologies are generally used to assert statements that are considered true in the
modelled world; in planning application, however, dynamics is the predominant
dimension, e.g., in a planning domain theory we can include definition of actions
that are mutually exclusive and therefore cannot be “asserted” at the same time.
Thus it could be considered unusual on unsuitable to use ontologies to represent
planning knowledge.

However, our investigation does not deal with the search for the optimal plan,
i.e. our formalization does not want to be used within the planning algorithm.
Indeed, our purpose is different: through an ontological representation, we aim
to predicate on the possible states of the planning world and on the causality
of state transitions, i.e. the conditions under which the world state changes.
Within the planning metamodel we want to “statically” represent the possible
“dynamics” of the world.

In this section, we explain our modelling of the planning problem and of
its causality definition. We reuse as much as possible the terminology used in
planning literature [6, 1, 2]; some part of the vocabulary can specifically refer to
the terminology used in timeline-based planning [7, 8].

2.1 Planning metamodel

As introduced above, a domain theory defines the planning problem, in terms of
the agents, their possible actions and the causality between them. The planning
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problem consists in identifying a set of relevant aspects whose (temporal) evolu-
tions need to be controlled to obtain a desired behaviour or to attain a specific
goal. In the following, we introduce the main primitives of a domain theory.

Components represent logical or physical subsystems whose properties may
vary in time, thus they are the relevant variables to be planned for. Components
evolve over time; events can happen and decisions can be taken on components:
those events and decisions alter the components evolution. Components can
either be intelligent agents, i.e. the characters involved in the planning — both
human and artificial ones —, or other entities, such as buildings, weather, rivers,
which are resources to be controlled in the planning.

We can classify components on the basis of their control. The temporal be-
haviour of controllable components is decided by the planner; those components
define the search space for the planning problem, and their evolution ultimately
represent the problem solution. Conversely, the evolution of uncontrollable com-
ponents is given to the planner as input; those components are imposed over
time thus they can only be observed: they can be seen as additional/external
data and constraints for the planning problem.

Actions are temporally tagged events. They are always related to a compo-
nent and they represent events or decisions that alter the component behaviour,
causing the transition of the component between two possible states. Usually
the term decision is used in relation to an uncontrollable component, while the
term event is preferred to indicate an action determined by the planner that
happens to a controllable component; in the following we will use only the term
action for the sake of simplicity. Actions always refer to some component and
are characterized by some parameters. The conditions under which actions can
occur are regulated by the domain theory.

The domain theory defines actions’ causality, i.e. the combinations of compo-
nents behaviours that are acceptable with respect to actions happening on other
components. We represent such causality by means of planning rules, also called
synchronizations. A planning rules specifies the “consequences” of actions, i.e. it
states the relation between two or more actions. In their generic form, planning
ruless relate how an action (also called reference action) can activate one or more
actions (target actions) if some conditions or constraints on components and/or
on action’s parameters are verified.

Rule conditions are the constraints defined within a planning rule. In their
generic form, rule conditions impose requirements on the actions involved in a
synchronization, thus they can be represented as relations between action param-
eters. A special case of constraint, very relevant for the timeline-based planning
problem, is the temporal condition: it represents a temporal constraint on an
action (e.g., an action must have a duration of 10 minutes) or on the temporal
sequence of two actions (e.g., an action must start only when another action
finishes). Allen’s Interval Algebra [9] is used to formalize temporal conditions.

Let’s consider the following example of planning rule: if an ambulance with
a patient arrives at a hospital and the latter has remaining capacity, then the
patient can be admitted and the number of available beds is decreased by one.
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In the example we identify two components, the ambulance and the hospital; a
reference action (the ambulance carrying the patient to the hospital), a target
action (the hospital reserves a bed to the patient) and a condition (there are
available beds in the hospital). It is important to note that a reference action can
enable the activation of one or more actions (if the rule conditions are satisfied).

2.2 An OWL 2 formulation of the planning metamodel

We represent the conceptualization defined in the previous section in OWL 2 [5].
The complete definition of this ontology is available at http://swa.cefriel.
it/ontologies/tplanning'; in this section, we explain some of the modelling
choices.

hasParameter .-~ ~~_actionTriggersAction
Parameter < /

hasActionValue

isActionOf

Component

isRuleEffectActionOf
; hasRuleEffect

PlanningRule

ndition
ruleTriggersRule '~ __- hasRuleCondition cepditie

Fig. 1. A graphical representation of the main entities in our planning ontology

Figure 1 illustrates the concepts introduced above with the properties that in-
terrelate them. Actions refer to Components and are described by Parameters;
a PlanningRule puts in relation some causal action (related via the hasRule-
Action property) with some RuleEffect (which, in turn, can include “target”
actions); the causality constraints in a planning rule are defined by Conditions.

With the use of property chain axioms [5], we introduce also some derived
properties. For example, starting from the basic properties defining a planning
rule (indicated by a solid line in Figure 1), we infer other properties that identify
the planning causality (indicated by a dashed line), as follows:

tpl:hasReferenceComponent C tpl:hasRuleAction o tpl:isActionOf
tpl:isRuleEffectActionOf T tpl:hasActionvalue ~ o tpl:hasRuleEffect ~
tpl:actionTriggersAction C tpl:hasRuleAction ~ o tpl:isRuleEffectActionOf ~
tpl:ruleTriggersRule C tpl:isRuleEffectActionOf ~ o tpl:hasRuleAction —

! In the following, the tpl prefix (temporal-planning) will be used to indicate terms
from this ontology. We omit the tpl prefix in the figures for sake of readability.
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The last two properties indicates the causality between actions (an action triggers
another action if there is a planning rule which is activated by the first action
and has the second action as effect of its activation) and the causality between
rules (a rule triggers another rule if there is an action which is an effect of the
first rule and activates the second rule).

2.3 Modelling conditions in planning rules

Most part of the planning causality, however, is usually included in the rule con-
ditions. As introduced above, a condition imposes restrictions on the involved
actions, their components or their parameters. Conditions can be assignments
(in the example above, the hospital capacity is decreased by one), constraints
(e.g., the hospital capacity must be greater or equal to one) or temporal condi-
tions (e.g., the ambulance must arrive at the hospital before the patient can be
admitted). Figure 2 illustrates the different types of rule conditions.

Temporal

Condition @
Sp:expressi

Constraint
Condition

PlanningRule Condition

hasRule
Condition

sp:arg2, ...

sp:variable
Assignment
Condition

‘ — rdfs:subClassOf Z__~
sp:expression

Fig. 2. Modelling of conditions in planning rules and their relation to SPARQL clauses
(FILTER and LET) as modelled in SPIN.

In the SPARQL query language [10], FILTER clauses are used to express con-
straints on query variables; moreover, even if not part of the official specification,
some SPARQL extensions also define LET clauses to express assignments on
query variables?. It was therefore natural to us to assimilate planning rule con-
ditions to SPARQL FILTER and LET clauses. For their modelling, we reused
the well-known SPARQL Inferencing Notation [11], also known as SPIN (see
again Figure 2). SPIN allows to model SPARQL queries in RDF, thus enabling
to define query patterns together with the vocabulary or ontology they refer to.
In our case, SPIN allows us to model the conditions that affect planning actions
and their parameters together with the definition of the actions themselves.
SPIN already defines a number of different constraint types, called functions;
for example, SPIN models Boolean functions (equal, not equal, greater than,
etc.), mathematical functions (addition, subtraction, etc.) and operations on
strings (e.g. regular expressions). Since in planning the time dimension has an
important role in the causality definition, we extended this SPIN modelling of

2 For example, the popular Jena framework implements the LET clause in the ARQ
library.
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functions to include temporal relations as defined by Allen [9]. Figure 3 shows
our modelling: we defined a TemporalFunction for each Allen relation (before,
after, temporal-equal, etc.); each function can be further described by one or
more temporal “ranges”, that indicate the intervals characterizing the relation
(e.g. action A starts 5 to 10 minutes after action B ends).

rangel, range2,
ranges, ...
rdfs:subClassOf

lowerBound
upperBound Temporal spl:Boolean

Functions Functions
xsd:double

rdfs:subClassOf

Before

Fig. 3. Extension to the SPIN modelling of functions with Allen’s temporal relations.

3 The Planning Causality as an Open Provenance Model

The Open Provenance Model Specification [3] was designed to meet several re-
quirements, among which defining provenance in a technology-agnostic manner,
supporting a digital representation of provenance and defining a core set of rules
that identify the valid inferences that can be made on provenance representa-
tions. The basic nodes and edges in OPM are graphically represented in Figure 4.

~9\ opmv:wasGeneratedBy
QPrm

opmv:was
ControlledBy opmv:Process

opmv:Agent opmv:Artifact

wouijpanagsem:awdo

I—T opmv:used

opmv:wasTriggeredBy

Fig. 4. The basic constituents of a provenance graph according to OPM.

According to this specification, an OPM profile is a specialisation of OPM that
remains compatible with the semantics of OPM but that defines a best prac-
tice or usage guideline for a specific provenance application. The planning meta-
model introduced in Section 2 can be seen as an OPM profile, in that the causal-
ity between actions by means of planning rules is a way to represent the actions
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“derivation”, “use” and “generation” during the planning process. It is worth
noting that, while OPM is usually employed to trace provenance in past process
executions, in the planning case the actions causality represents a potential fu-
ture provenance information (indeed, the actions defined in a planning domain
model represent action “templates” rather than “instances” of actions).

In this section, we define our Planning OPM profile and its formalization in
a mapping between our planning metamodel and the Open Provenance Model
Vocabulary [4], one of the ontological formulations of OPM. We also express
the OPM completion rules and inferences, as defined in [3], and we explain
how we relaxed some of the OPM constraints to better capture the concept
of “provenance” in planning. We are aware that the formalization provided in
the following has stronger assertions than those in OPM; still, we confine those
restrictions to our OPM profile, in which they are meaningful and valid, and do
not intend them as of general value outside our profile.

3.1 Mapping the planning metamodel to OPMV

opmv:wasDerivedFrom
hasParameter <\ actionTriggersAction

Y

isActionOf

Component

Mv:wasGeneratedBy

isRuleEffectActionOf
hasReferenceComponent

opmv:wasContrglledBy

\ PlanningRule l
ruIeTriggersRuIe

opmv:wasTriggeredBy

QPm

Fig. 5. The planning metamodel as an OPM Profile.

Figure 5 graphically shows our planning OPM profile® (cf. with Figure 1). The
planning rules are our main processes, the components are our agents and the
actions are the artifacts of the planning. Thus, with reference to the OPM nodes
and edges as defined in the OPM Vocabulary [4], in our planning profile we assert
that:

tpl:Component = opmv:Agent
tpl:PlanningRule T opmv:Process
tpl:Action C opmv:Artifact

3 The complete definition of the planning OPM profile is also available on the Web at
http://swa.cefriel.it/ontologies/causality-provenance.
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In fact, in a similar way to what happens in OPM, planning rules are on the
one hand related and influenced by the components, and on the other hand they
refer to actions in input and they “produce” sets of actions as output.

With respect to the definition of properties, we map the planning predicates
to the relations defined in OPM, as follows:

tpl:hasRuleAction © opmv:used
tpl:isRuleEffectActionOf T opmv:wasGeneratedBy
tpl:hasReferenceComponent C opmv:wasControlledBy
tpl:actionTriggersAction T opmv:wasDerivedFrom
tpl:ruleTriggersRule C opmv:wasTriggeredBy

3.2 Completion rules and inferences

The definition of the planning OPM profile enables a set of completion rules
and inferences [3], i.e. a set of rules that allows to derive further provenance
relationships between processes and artifacts in a provenance graph. In our case,
applying those rules to our planning OPM profile can help in inferring indirect
or implicit causal relationships between actions and planning rules defined in a
planning domain theory.

The OPM completion rules can be summarized as follows:

opmv:wasTriggeredBy = opmv:used o opmv:wasGeneratedBy
opmv:wasDerivedFrom J opmv:wasGeneratedBy o opmv:used

The first line above formalizes the so-called artifact introduction and elimination
completion rule: a process was triggered by another process if and only if an
artifact used by the first process was generated by the second one.

The second line expresses the process introduction completion rule: if an
artifact was derived from another artifact, there must have been a process that
generated the first artifact and used the second one. OPM explicitly states that in
general the converse rule (process elimination) does not hold, because without
any internal knowledge of the process, it is not possible to assert an actual
dependency between the two artifacts. However, OPM also offer the possibility to
relax this constraint within a specific OPM profile; in our case, the processes are
always planning rules which — by definition — express the causality dependency
between actions (i.e., artifacts). Thus, in our planning OPM profile, we state
that both the process introduction and the process elimination completion rules
hold, replacing the second line of the axioms above with the following one:

opmv:wasDerivedFrom = opmv:wasGeneratedBy o opmv:used

Thus, because of the mapping we defined above, in our planning OPM profile,
the following completion rules hold:

tpl:ruleTriggersRule = tpl:hasRuleAction o tpl:isRuleEffectActionOf
tpl:actionTriggersAction = tpl:isRuleEffectActionOf o tpl:hasRuleAction
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Those completion rules let us derive the causal relationships between any couple
of actions or processes in a planning domain theory.

Additionally, OPM define multi-step inferences to account for indirect causes
of an artifact or a process as effect of multiple steps. Specifically, OPM de-
fines the multi-step version of wasDerivedFrom, used, wasGeneratedBy and
wasTriggeredBy edges (which all depend on the transitive closure of the was-
DerivedFrom relation). We can express those multi-step inferences as follows:

Transitive( opmv:wasDerivedFrom )
opmv:used C opmv:used o opmv:wasDerivedFrom
opmv:wasGeneratedBy T opmv:wasDerivedFrom o opmv:wasGeneratedBy
opmv:was TriggeredBy T opmv:used o opmv:wasDerivedFrom
o opmv:wasGeneratedBy

-
-

Thanks to the mapping between our planning metamodel and the OPMV, the
following multi-step inference rules hold:

Transitive( tpl:actionTriggersAction )
tpl:hasRuleAction C tpl:hasRuleAction o tpl:actionTriggersAction
tpl:isRuleEffectActionOf C tpl:actionTriggersAction o tpl:isRuleEffectActionOf
tpl:ruleTriggersRule C tpl:hasRuleAction o tpl:actionTriggersAction
o tpl:isRuleEffectActionOf

C
C

Again, those inferences can be employed to derive indirect causal relationships
between actions and processes.

Summing up, the definition of an OPM profile for our planning metamodel
allows us to reuse the provenance primitives to analyse and infer new knowledge
about the causality between actions and planning rules in a domain theory. In
the following section, we will show how the above inferences can help in checking
the planning domain modelling.

4 Automated Checking of Causality in Planning Models

Whereas planning software is supposed to conform to a solution search algo-
rithm, a planning domain model is supposed to capture a piece of reality and so
it requires its own acceptance criteria and tests. Using our ontological formula-
tion of the planning metamodel, we can devise guidelines and tests to capture
different levels of consistency for domain models. We would like to stress that,
while the typical concerns of a planner are efficiency, correctness and complete-
ness of the planning algorithms, here we concentrate on the modeller’s point of
view, whose concerns include validation, expressive power and maintenance of a
domain model [12].

In this section, we give some examples of controls that are enabled by our
ontological formulation of the planning metamodel and by its mapping to OPM.
Those controls can be successfully employed to support the modeller’s task, i.e.
to verify the correctness and consistency of the planning domain model. Without
claiming to be exhaustive, in the following we formalize some of those controls
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and we explain how those checks can be easily implemented via SPARQL 1.1 [10]
queries.

4.1 Model Completeness and Action Reachability

As outlined in [12], usually modellers start from the identification of the rele-
vant objects (planning components), then continue with the definition of their
relations (actions on components), afterwards they analyse the possible world
states and their transitions (planning rules), and so on. When modelling a large
or complex planning domain, the number of introduced entities can be very high
and verifying the consistency and meaningfulness of the whole model can become
complex.

We define a planning domain model as complete when all modelled compo-
nents are involved in some action and all modelled actions are involved in some
planning rule. It is worth noting that “orphan” components or actions does not
make the domain theory inconsistent per se, but they can suggest an unfinished
or lacking modelling. Setting a control to check model completeness is aimed to
support the modeller to identify potential lacks or shortcomings in the domain
definition.

Component and actions making the model incomplete can be defined as:

tpl:OrphanComponent C tpl:Component MV tpl:isActionOf ~. L
tpl:OrphanAction C tpl:Action MV tpl:iisRuleEffectActionOf . L
MV tpl:hasRuleAction ~. L

Checking the completeness of the model therefore means that the above defined
classes have no instances in the planning domain model. Conversely, if some
“orphans” are found, those are the domain entities the modeller should look
at to identify potential pitfalls. Assuming a closed world assumption, we can
implement this check simply by querying the planning domain model expressed
in our planning metamodel with the following SPARQL 1.1 [10] queries:

SELECT ?7component
WHERE {

?component a tpl:Component .

FILTER NOT EXISTS { 7action tpl:isActionOf ?component . }
X

SELECT ?action
WHERE {
?action a tpl:Action .
?rule a tpl:PlanningRule .
FILTER NOT EXISTS { 7rule tpl:hasRuleAction ?7action . }
FILTER NOT EXISTS { 7action tpl:isRuleEffectActionOf ?rule . }
X

Another property of a domain model a modeller could wish to check is ac-
tion reachability. We define an action reachable if there is at least a planning
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rule which causes that action, i.e. which has that action as effect. Again, this
kind of control is aimed at supporting the modeller to identify potentially in-
complete entity definition: if an action is introduced in a domain, it is very likely
that the modeller considered it possible to generate that action in some plan.
Nevertheless, it also perfectly reasonable that a defined action appears only as
the condition to fire a planning rule and not as its effect. This can happen when
the action refers to an uncontrollable component (cf. Section 2.1): in this case,
since the action activation depends on an agent external to any generated plan,
there is no need for a planning rule to cause that action in the domain model.
An unreachable action can be defined as follows:

tpl:UnreachableAction C tpl:Action MV tpl:isRuleEffectActionOf . L
MV tpl:isActionOf . tpl:ControllableComponent

Following the definition of the planning OPM profile (cf. Section 3.1), the class
above can be also expressed as follows:

tpl:UnreachableAction T opmv:Artifact MV opmv:wasGeneratedBy . L
MY opmv:used ~. opmv:wasControlledBy .
tpl:ControllableComponent

Thanks to OPM multi-step inferences (cf. Section 3.2), this definition includes
all possible provenance paths that connect actions (artifacts) with planning rules
(processes).

Again, checking the action reachability in a domain model means verifying
that the above defined class has no instances in the domain theory. To identify the
unreachable actions, and thus understand the appropriateness of their definition,
a modeller can use the following SPARQL 1.1 query (or the respective one that
makes use of OPMV properties as per the planning OPM profile):

SELECT 7action
WHERE {
?action a tpl:Action.
FILTER NOT EXISTS {
?rule tpl:hasRuleEffect/tpl:hasActionValue 7action .
}
FILTER NOT EXISTS {
7action tpl:isAction0f [ a tpl:UncontrollableComponent ]
}
}

4.2 Constraint Checking

As illustrated in Section 2, defining a planning rule includes also the introduction
of a set of conditions, i.e. constraints on the rule activation. It is often the case
that most of the “rational” and complexity of a planning domain theory lies
in its rules’ conditions. Therefore, verifying the consistency of a domain model
means checking the satisfiability of the constraints defined in the planning rules.
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For example, let’s say that we want to capture the rules of an educational
institution. A planning rule could say that, when a new student arrives and asks
to join the school, if he/she is above legal age (condition), the school can enrol
him/her. Another planning rule could state that, if a student is hurt and he/she
is below legal age (condition), the school should inform his/her parents. The
previous two rules are both reasonable and the first one is a sort of pre-condition
for the second one (people are considered students only after their enrolment);
still, it is apparent that the second rule will never be triggered, since no student
of this institution can be under legal age. Thus, a modeller has to check all rules’
conditions to understand if they ever apply.

In our planning metamodel, we decided to assimilate rule conditions to
SPARQL FILTER and LET clauses (cf. Section 2.3). This modelling choice
comes of help also for constraint checking: starting from the condition definition,
it is natural to create SPARQL queries with those clauses, in case combining dif-
ferent conditions; executing those queries on the planning domain model helps
the modeller to identify inconsistencies and potential modelling mistakes.

5 Applying our approach to Simulation Learning

Simulation Learning is a kind of training aimed to improve soft skills [13]. Sim-
ulation Learning systems generally re-create near-real environments for training
sessions, in which learners are subject to stimuli: they have to learn how to deal
with the simulated situation and how to react to it. Such simulations need to
be effective and engaging, so that the learners do not simply memorise notions,
but they actively and permanently acquire skills, practice and knowledge. In this
context, simulation sessions can be generated using planning technology from a
learning domain model.

The Pandora project? aims to provide a platform for Crisis Management sim-
ulation learning, providing a near-real training environment at affordable cost.
The Pandora platform [14] makes use of Timeline-based Planning technologies [7,
8] to plan the simulation sessions and it exploits the ontological framework ex-
plained in this paper to represent the actions causality in the crisis simulation
scenario. To this end, we specialized the planning ontology introduced in Sec-
tion 2.2 with the relevant entities of Crisis Management training, thus specify-
ing the Pandora ontology® and we set up a Linked Data-empowered Knowledge
Base [15] to manage the domain theory definition.

Modelling a Crisis Management scenario — or any Simulation Learning sce-
nario — means creating the crisis events to stimulate trainees (e.g., a street is
flooded, a hospital electricity becomes scarce for a black-out) and to plan for dif-
ferent storyboard evolutions in response to trainees’ actions (e.g., depending on
the Crisis Managers decisions, the crisis situation becomes more or less critical).

We applied the approach outlined in Section 4 to support the modeller in
verifying the domain theory: while not substituting the manual intervention,

4 Cf. nttp://www.pandoraproject.eu/.
5 Cf. http://swa.cefriel.it/ontologies/pandora.
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this method proved to be a useful means to detect potential problems, before
checking the plans generated by the planning algorithms. Indeed, the adoption
of our ontological metamodel and its verification via SPARQL queries (both
the generic completeness and reachability controls from Section 4.1 and some
manually-defined and domain-dependent queries built on top of the Pandora
rules conditions as described in Section 2.3) allowed the modeller to identify
missing definitions and unreachable actions. Though preliminary and qualitative,
this evaluation makes us believe in the usefulness and efficacy of our proposed
approach. We are currently investigating an automated way to generate the
SPARQL queries needed for constraint checking, starting from the planning rule
conditions’ definition.

6 Related Work

Different works in literature dealt with the ontological representation of planning
and scheduling knowledge. Early models like [16] and [17] were aimed at rep-
resenting planning tasks and planning problems; however, they were limited in
scope and did not considered all the relevant entities of the planning world. The
most comprehensive planning ontology so far is described in [18]: it is the first
formalization that includes the temporal dimension and the notion of agents.
Still, that model was aimed at proposing an operational specification of the
planning problem with a set of “executable” definitions.

In contrast, our planning metamodel is not directly oriented to the search for
plans; with our formalization we aim at supporting the modelling of planning
domain theories, by identifying potential problems prior to the execution of the
planning algorithms. Moreover, our metamodel is more detailed than the ontol-
ogy described in [18], because we make the constraints on the planning rules
“first-class citizens” of our conceptualization. This Condition concept not only
allows for the declarative definition of a complete domain theory, but it also
provides a mechanism to reuse and share constraints between different planning
rules. Furthermore, we underscored the temporal aspect of planning by introduc-
ing the TemporalCondition primitive and by modelling the TemporalFunctions
hierarchy.

In the planning community, a dedicated workshop [19] was organized to
discuss “the role of ontologies in Planning and Scheduling”. The result was
that ontological languages like RDFS and OWL are more expressive than the
ones in the planning field, for example because of the Open World Assump-
tion; however, they cannot be “directly applied” in planning systems because
they are usually employed to represent static knowledge. While we agree with
this statement, our investigation is oriented precisely in the possible cooperation
between ontologies and planning on their “boundary”: we can say that our meta-
model statically captures the dynamics of planning. Thus we are convinced that
ontology-based knowledge representation can bring benefits to current planning
technologies [20].
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Finally, a note about the languages used in planning: PDDL [2] is currently
the most popular, even if its iterative standardization did not prevent the spread
of a multitude of different dialects. While a comparison of expressivity between
PDDL and ontological languages is out of scope of this paper®, we would like
to stress again that we propose the use of an ontological formalization outside
the search process to find a solution to the planning problem. Our formalization
and causality checks are complementary to the consistency and validation of the
plans generated in the solution space.

7 Conclusions

In this paper, we presented our approach to formalize the planning primitives
and their relations with an ontology. We believe that this is a good example of
interplay between Semantic Web and Planning technologies [20], since knowledge
representation and reasoning — even in simple forms as we did in this work —
can be of great help during the planning modelling: the automatic checking of
the domain theory characteristics (e.g., completeness and reachability as defined
in this paper) supports the modellers’ job, because it helps them to identify
potential problems in their modelling even before checking the consistency of
the generated plans. Moreover, because of the spread and success of knowledge
sharing on the Web, including the Linked Data movement, planning modelling
can be simplified or reduced by reusing and linking to pre-existing datasets, as
we illustrated in a previous work [15].

To this end, we introduced an OWL 2 representation of this planning meta-
model and its formulation as an Open Provenance Model Profile, through a
mapping between our metamodel and the OPM Vocabulary. The reason why we
chose to adopt OPM is two-fold. On the one hand, the provenance abstractions
are very similar to the ones used in causality models, like those we have in our
planning metamodel. On the other hand, the completion rules and inferences
defined in OPM offer a simple yet powerful means to perform checks; this is why
we leveraged those reasoning means to formulate our model checks.

Our future works are oriented in two directions: extending the causality
checks introduced in this paper and applying analysis and mining on the ac-
tual “executions” of plans generated on the basis of domain theories represented
in our metamodel. With regards to the former, we will take into account some
more characteristics already modeller in the planning ontology introduced in
Section 2 and enhance accordingly the causality controls defined in Section 4.

Regarding the latter, once a domain theory has been modelled and used to
generate plans, those plans can be “executed” in planning applications (e.g., in
the simulation learning scenario introduced in Section 5, when training sessions
take place); the recording of those executions can be seen as “streams” of events,
i.e. assertions that are valid in a specific time-frame. We believe that we can
exploit those time-stamped assertions to refine the causality modelling: e.g.,

5 A discussion of the possible interplay between PDDL and Datalog is offered in [21].
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comparing the actual streams of happened events in different sessions, we can
identify the most frequent patterns of events which have some causality aspect
as well as the least frequent plan options; those can be interesting hints for the
planning modeller to improve the domain theory. Dealing with plan executions
means taking in consideration the temporal dimension, thus we need proper
approaches; to this end, we aim at employing Stream Reasoning technologies [22],
also by following other experiences in ex-post provenance analysis of workflow
executions as in [23].
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